Todorova, M.; Surendralal, S.: Corrosion at the Quantum Level. Coffee with Max Planck, virtual seminar organized by the MPIE, Düsseldorf, Germany (2021)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Insights into the stability and reactivity of solid/liquid interfaces from ab initio calculations. 71st Annual Meeting of the International Society of Electrochemistry "Electrochemistry towards Excellence", virtual, Belgrade, Serbia (2020)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Predicting atomic structure and chemical reactions at solid-liquid interfaces by first principles. Operando surface science – Atomistic insights into electrified solid/liquid interfaces (708. WE-Heraeus-Seminar), Physikzentrum, Bad Honnef, Germany (2019)
Neugebauer, J.; Surendralal, S.; Todorova, M.: First-principles appraoch to model electrochemical reactions at solid-liquid interfaces. ACS 2019 Fall Meeting & Exhibition, San Diego, CA, USA (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: Degradation processes at surfaces and interfaces. ISAM4: The fourth International Symposium on Atomistic and Multiscale Modeling of Mechanics and Multiphysics, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: Building an ab-initio potentiostat in a standard DFT code with periodic boundary conditions. ELRC2019 - IPAM reuniuon workshop, Lake Arrowhead, CA, USA (2019)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: A fully ab initio approach to modelling electrochemical solid/liquid interfaces. Chemiekolloquium der Johannes Kepler Universität Linz, Linz, Austria (2019)
Todorova, M.; Surendralal, S.; Neugebauer, J.: First-principles approach to model electrochemical reactions at the solid-liquid interface. Spring Meeting of the German Physical Society (DPG 2019), Regensburg, Germany (2019)
Neugebauer, J.; Todorova, M.; Grabowski, B.; Hickel, T.: Modelling structural materials in realistic environments by ab initio thermodynamics. Hume-Rothery Award Symposium, TMS2019 Annual Meeting and Exhibition, San Antonio, TX, USA (2019)
Neugebauer, J.; Surendralal, S.; Todorova, M.: Extending First-Principles Calculations to Model Electrochemical Reactions at the Solid-Liquid Interface. Towards Reality in Nanoscale Materials X, Levi, Finnland (2019)
Todorova, M.; Yoo, S.-H.; Surendralal, S.; Neugebauer, J.: Modelling electrochemical solid/liquid interfaces by first principles calculations. 19th International Workshop on Computational Physics and Material Science: Total Energy and Force Methods, ICTP, Trieste, Italy (2019)
Todorova, M.: From semiconductor defect chemistry to electrochemistry: Challenges and insights. AMaSiS 2018 Workshop, Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany (2018)
Todorova, M.: Stability and reactivity of solid/liquid interfaces from ab initio calculations. International Workshop on Computational Electrochemistry, Aalto University, Helsinki, Finland (2018)
Todorova, M.: Insights into electrochemical problems from the perspective of semiconductor defect chemistry. International Workshop on Computational Electrochemistry, Aalto University, Helsinki, Finland (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.
This project aims to investigate the dynamic hardness of B2-iron aluminides at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1 and study the microstructure evolution across strain rate range.