Wetegrove, M.; Duarte, M. J.; Taube, K.; Rohloff, M.; Gopalan, H.; Scheu, C.; Dehm, G.; Kruth, A.: Preventing Hydrogen Embrittlement: The Role of Barrier Coatings for the Hydrogen Economy, Hydrogen 4 (2 Ed.), pp. 307 - 322 (2023)
Dehm, G.; Liebscher, C.; Völker, B.; Scheu, C.: Organizer of the “IAMNano 2019 Düsseldorf” - International Workshop on Advanced In Situ Microscopies of Functional Nanomaterials and Devices. (2019)
Scheu, C.: Co-organizer of the symposium “PS12 - Materials for Energy Production, Storage and Catalysis” at the “19th International Microscopy Congress. (2018)
Scheu, C.: Co-organizer of the symposium “Experimental and Theoretical insights on Interfaces of Ceramics” at the “Conference on Electronic and Advanced Materials”. (2018)
Hübel, K.; Rohwerder, M.; Scheu, C.; Todorova, M.: Organizer of the workshop “Status and Future Challenges in Characterisation of Interfaces for Electrochemical Applications - Part 1” at the MPIE. (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
This project targets to exploit or develop new methodologies to not only visualize the 3D morphology but also measure chemical distribution of as-synthesized nanostructures using atom probe tomography.
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…