Kuo, J. C.; Zaefferer, S.; Raabe, D.: Experimental investigation of the deformation behavior of aluminium-bicrystals. MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
Ma, A.; Roters, F.; Raabe, D.: Simulation of textures and Lankford values for face centered cubic polycrystaline metals by using a modified Taylor model. (2004)
Raabe, D.: A 3D probabilistic cellular automaton for the simulation of recrystallization and grain growth phenomena. Max-Planck-Society, München, Germany (2004)
Raabe, D.; Bréchet, Y.; Gottstein, G.; de Hosson, J.; Van Houtte, P.; Vitek, V.: Recommendations for Future Basic Research on Metallic Alloys and Composites in the 6th EU Framework Program - Metals and composites: Basis for growth, safety, and ecology. (2004)
Raabe, D.; Pramono, A.: Report on copper–niob research at the Max-Planck-Institut, Düsseldorf – Simulations and experiments. MPI für Eisenforschung, Düsseldorf, Germany (2004)
Sachtleber, M.; Raabe, D.: Theoretische und experimentelle Untersuchung der Kornwechselwirkung in Aluminium. MPI für Eisenforschung GmbH, Düsseldorf, Germany (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, the effects of scratch-induced deformation on the hydrogen embrittlement susceptibility in pearlite is investigated by in-situ nanoscratch test during hydrogen charging, and atomic scale characterization. This project aims at revealing the interaction mechanism between hydrogen and scratch-induced deformation in pearlite.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
In collaboration with Dr. Edgar Rauch, SIMAP laboratory, Grenoble, and Dr. Wolfgang Ludwig, MATEIS, INSA Lyon, we are developing a correlative scanning precession electron diffraction and atom probe tomography method to access the three-dimensional (3D) crystallographic character and compositional information of nanomaterials with unprecedented…