Peranio, N.; Schulz, S.; Li, Y. J.; Roters, F.; Raabe, D.; Masimov, M.; Springub, G.: Processing of dual-phase steel for automotive applications: Microstructure and texture evolution during annealing and numerical simulation by cellular automata. Euromat 2009 (European Congress and Exhibition on Advanced Materials and Processes), Glasgow, UK (2009)
Butz, A.; Rist, T.; Springub, B.; Roters, F.; Schulz, S.; Peranio, N.; Lossau, S.: From Cold Rolling to Deep Drawing - Microstructure Based Modeling of a Dual Phase Steel. NUMISHEET 2008, Interlaken, Switzerland (2008)
Springub, G.; Masimov, M.; Peranio, N.; Li, Y. J.; Roters, F.; Raabe, D.: Study of substructure and texture development in dual phase steels due to thermo-mechanical treatment. ITAP3, 3d International Conference on Texture and Anisotropy in Polycrystals, Göttingen, Germany (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Biological materials in nature have a lot to teach us when in comes to creating tough bio-inspired designs. This project aims to explore the unknown impact mitigation mechanisms of the muskox head (ovibus moschatus) at several length scales and use this gained knowledge to develop a novel mesoscale (10 µm to 1000 µm) metamaterial that can mimic the…
In this project, we aim to synthetize novel ZrCu thin film metallic glasses (TFMGs) with controlled composition and nanostructure, investigating the relationship with the mechanical behavior and focusing on the nanometre scale deformation mechanisms. Moreover, we aim to study the mechanical properties of films with complex architectures such as…
Titanium and its alloys are widely used in critical applications due to their low density, high specific strength, and excellent corrosion resistance, but their poor plasticity at room temperature limits broader utilization. Introducing hydrogen as a temporary alloying element has been shown to improve plasticity during high-temperature processing…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.