Li, Y.; Choi, P.-P.; Goto, S.; Borchers, C.; Raabe, D.; Kirchheim, R.: Atomic scale investigation of redistribution of alloying elements in pearlitic steel wires upon cold-drawing and annealing. Ultramicroscopy 132, pp. 233 - 238 (2013)
Chen, Y. Z.; Herz, A.; Li, Y. J.; Borchers, C.; Choi, P.; Raabe, D.; Kirchheim, R.: Nanocrystalline Fe–C alloys produced by ball milling of iron and graphite. Acta Materialia 61 (9), pp. 3172 - 3185 (2013)
Peranio, N.; Li, Y. J.; Roters, F.; Raabe, D.: Microstructure and texture evolution in dual-phase steels: Competition between recovery, recrystallization, and phase transformation. Materials Science and Engineering A 527 (16-17), pp. 4161 - 4168 (2010)
Blum, W.; Li, Y. J.; Durst, K.: Stability of ultrafine-grained Cu to subgrain coarsening and recrystallization in annealing and deformation at elevated temperatures. Acta Materialia 57, pp. 5207 - 5217 (2009)
Peng, Z.; Gault, B.; Raabe, D.; Ashton, M. W.; Sinnott, S. B.; Choi, P.-P.; Li, Y.: On the Multiple Event Detection in Atom Probe Tomography. In: MicroscopyMicroanalysis, Vol. 23, pp. 618 - 619. Microscopy & Microanalysis 2017, St. Louis, MO, USA, August 06, 2017 - August 10, 2017. (2017)
Joo, M.; Xiu, H.; Cheng, N.; Somsen, C.; Baha, S.; Ludwig, A.; Li, Y.; Kostka, A.; Scheu, C.: Investigation of planar defect evolution in Au–Pd–Pt–Ru-based compositionally complex solid solution thin films using analytical transmission electron microscopy. The 2025 Fall Meeting of the European Materials Research Society (E-MRS), Warsaw, Poland (2025)
Morsdorf, L.; Mayweg, D.; Li, Y.; Diederichs, A.; Raabe, D.; Herbig, M.: Moving cracks and missing C atoms – chasing the mysteries of white etching areas in bearings. 2nd meeting of "Metallurgical Metallurgy for Plasticity-driven Damage and Fracture" research forum 2021 (ISIJ), virtual (2021)
Herbig, M.; Parra, C.D.; Lu, W.; Toji, Y.; Liebscher, C.; Li, Y.; Goto, S.; Dehm, G.; Raabe, D.: Where does the carbon atom go in steel? – Insights gained by correlative transmission electron microscopy and atom probe tomography. International Symposium on Steel Science 2017, Kyoto, Japan (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Understanding hydrogen-microstructure interactions in metallic alloys and composites is a key issue in the development of low-carbon-emission energy by e.g. fuel cells, or the prevention of detrimental phenomena such as hydrogen embrittlement. We develop and test infrastructure, through in-situ nanoindentation and related techniques, to study…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…
Hydrogen embrittlement (HE) of steel is a great challenge in engineering applications. However, the HE mechanisms are not fully understood. Conventional studies of HE are mostly based on post mortem observations of the microstructure evolution and those results can be misleading due to intermediate H diffusion. Therefore, experiments with a…