Beschliesser, M.; Chatterjee, A.; Lorich, A.; Knabl, W.; Kestler, H.; Dehm, G.; Clemens, H.: Designed fully lamellar microstructures in a γ-TiAl based alloy: adjustment and microstructural changes upon long-term isothermal exposure at 700 and 800 degrees C. Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing 329-331, pp. 124 - 129 (2002)
Chatterjee, A.; Dehm, G.; Scheu, C.; Clemens, H.: Onset of microstructural instability in a fully lamellar Ti-46.5 at.% Al-4 al.% (Cr,Nb,Ta,B) alloy during short-term creep. Zeitschrift für Metallkunde/Materials Research and Advanced Techniques 91 (9), pp. 755 - 760 (2000)
Chatterjee, A.; Clemens, H.; Dehm, G.; Mecking, H.; Kestler, H.; Arzt, E.: Creep Behavior and Microstructural Changes During Short-Term Creep in a γ-TiAl Based Alloy with Fully Lamellar Microstructure. In: Gamma Titanium Aluminides 2003, pp. 425 - 430. Gamma Titanium Aluminides 2003, San Diego, CA, USA, March 02, 2003 - March 06, 2003. (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…