Ostwald, C.; Grabke, H. J.: Initial Oxidation and Chromium Diffusion. I. Effects of Surface Working on 9-20% Cr Steels. Corrosion Science 46 (5), pp. 1113 - 1127 (2004)
Grabke, H. J.; Spiegel, M.; Zahs, A.: Role of Alloying Elements and Carbides in the Chlorine-induced Corrosion of Steels and Alloys. Materials Research 7 (1), pp. 89 - 95 (2004)
Grabke, H.-J.; Tôkei, Z. S.; Ostwald, C.: Initial Oxidation of a 9 % CrMo- and a 12 % CrMoV – Steel. Steel Research International 75 (1), pp. 38 - 46 (2004)
Grabke, H. J.; Müller-Lorenz, E. M.; Zinke, M.: Metal Dusting Behaviour of Welded Ni-Base Alloys with Different Surface Finish. Material and Corrosion 54, pp. 785 - 792 (2003)
Pippel, E.; Woltersdorf, J.; Grabke, H. J.: Microprocesses of Metal Dusting on Iron - Nickel Alloys and their Dependence on Composition. Material and Corrosion 54 (10), pp. 747 - 751 (2003)
Spiegel, M.; Zahs, A.; Grabke, H. J.: Fundamental aspects of chlorine induced corrosion in power plants. Materials at High Temperatures 20, 2, pp. 153 - 159 (2003)
Moszynski, D.; Grabke, H. J.; Schneider, A.: Effect of sulphur on the formation of graphite at the surface of carburized iron. Surface and Interface Analysis 34, pp. 380 - 383 (2002)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…