Morsdorf, L.; Ponge, D.; Raabe, D.; Tasan, C. C.: New multi-probe experimental approaches to study complex lath martensite. Seminar at Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan (2016)
Raabe, D.; Choi, P.-P.; Gault, B.; Ponge, D.; Yao, M.; Herbig, M.: Segregation engineering for self-organized nanostructuring of materials - from atoms to properties? APT&M 2016 - Atom Probe Tomography & Microscopy 2016 (55th IFES) , Gyeongju, South Korea (2016)
Kuzmina, M.; Gault, B.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D.: From grains to atoms: ping-pong between experiment and simulation for understanding microstructure mechanisms. Res Metallica Symposium, Department of Materials Engineering, KU Leuven, Leuven, The Netherlands (2016)
Ponge, D.; Herbig, M.; Tasan, C. C.; Raabe, D.: Integrated experimental and simulation analysis of dual phase steels. Workshop on Possibilities and Limitations of Quantitative Materials Modeling and Characterization 2016, Bernkastel, Germany (2016)
Raabe, D.: Materials Engineering through the Ages: from the Battle of Kadesh to Atomic Scale Materials Design. Elite Network of Bavaria (ENB) Forum in Erlangen: Focus on Materials Engineering, Erlangen, Germany (2016)
An, D.; Konijnenberg, P. J.; Zaefferer, S.; Raabe, D.: Correlation between the 5-parametric GBCD and the corrosion resistance of a 304 stainless steel by 3D-EBSD. RMS-EBSD Meeting 2016, Manchester, UK (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…