He, Z. F.; Jia, N.; Ma, D.; Yan, H.-L.; Li, Z.; Raabe, D.: Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 759, pp. 437 - 447 (2019)
Wang, Z.; Lu, W.; Raabe, D.; Li, Z.: On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds 781, pp. 734 - 743 (2019)
Wu, M.; Li, Z.; Gault, B.; Munroe, P.; Baker, I.: The Effects of Carbon on the Phase Stability and Mechanical Properties of Heat-Treated FeNiMnCrAl High Entropy Alloys. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 748, pp. 59 - 73 (2019)
Su, J.; Raabe, D.; Li, Z.: Hierarchical microstructure design to tune the mechanical behavior of an interstitial TRIP-TWIP high-entropy alloy. Acta Materialia 163, pp. 40 - 54 (2019)
Ou, P.; Li, Z.: Ordering of primary carbonitrides in an austenitic steel revealed by transmission electron microscopy and atom probe tomography. Materials 11 (11), 2321 (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.