Springer, H.; Tasan, C. C.; Raabe, D.: A novel roll-bonding methodology for the cross-scale analysis of phase properties and interactions in multiphase structural materials. International Journal of Materials Research 106 (1), pp. 3 - 14 (2015)
Tasan, C. C.; Hoefnagels, J. P.M.; Diehl, M.; Yan, D.; Roters, F.; Raabe, D.: Strain localization and damage in dual phase steels investigated by coupled in-situ deformation experiments and crystal plasticity simulations. International Journal of Plasticity 63, pp. 198 - 210 (2014)
Wang, M.; Tasan, C. C.; Ponge, D.; Kostka, A.; Raabe, D.: Smaller is less stable: Size effects on twinning vs. transformation of reverted austenite in TRIP-maraging steels. Acta Materialia 79, pp. 268 - 281 (2014)
Yao, M.; Pradeep, K. G.; Tasan, C. C.; Raabe, D.: A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia 72–73, pp. 5 - 8 (2014)
Tasan, C. C.; Hoefnagels, J. P. M.; Dekkers, E. C. A.; Geers, M. G. D.: Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture. Experimental Mechanics 52 (7), pp. 669 - 678 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M.G. D.: Identification of the continuum damage parameter: An experimental challenge in modeling damage evolution. Acta Materialia 60 (8), pp. 3581 - 3589 (2012)
Tasan, C. C.; Hoefnagels, J. P. M.; Geers, M. G. D.: A micropillar compression methodology for ductile damage quantification. Metallurgical and Materials Transactions A 43 (3), pp. 796 - 801 (2012)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: Microstructural Banding Effects Clarified Through Micrographic Digital Image Correlation. Scripta Materialia 62 (11), pp. 835 - 838 (2010)
Tasan, C. C.; Hoefnagels, J.P.M.; Geers, M.G.D.: A brittle-fracture methodology for three-dimensional visualization of ductile deformation micromechanisms. Scripta Materialia 61 (1), pp. 20 - 23 (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…