Mendive-Tapia, E.; Neugebauer, J.; Hickel, T.: Ab initio calculation of the magnetic Gibbs free energy of materials using magnetically constrained supercells. Physical Review B 105 (16), 064425 (2022)
Sreekala, L.; Dey, P.; Hickel, T.; Neugebauer, J.: Unveiling nonmonotonic chemical trends in the solubility of H in complex Fe–Cr–Mn carbides by means of ab initio based approaches. Physical Review Materials 6 (1), 014403 (2022)
Schneider, A.; Fu, C.-C.; Waseda, O.; Barreteau, C.; Hickel, T.: Ab initio based models for temperature-dependent magnetochemical interplay in bcc Fe–Mn alloys. Physical Review B 103 (2), 024421 (2021)
Lochner, F.; Eremin, I. M.; Hickel, T.; Neugebauer, J.: Ab initio study of the structural response to magnetic disorder and van der Waals interactions in FeSe. Physical Review B 103 (5), 054506 (2021)
Esakkiraja, N.; Gupta, A.; Jayaram, V.; Hickel, T.; Divinski, S. V.; Paul, A.: Diffusion, defects and understanding the growth of a multicomponent interdiffusion zone between Pt-modified B2 NiAl bond coat and single crystal superalloy. Acta Materialia 195, pp. 35 - 49 (2020)
Sözen, H. I.; Hickel, T.; Neugebauer, J.: Impact of magnetism on the phase stability of rare-earth based hard magnetic materials. Calphad 68, 101731 (2020)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.