Brinckmann, S.: Friction and wear of austenite steel: plasticity and crack formation. 71st Annual Meeting & Exhibition of the Society of Tribologists and Lubrication Engineers (STLE 2016), Las Vegas, NV, USA (2016)
Duarte, M. J.; Brinckmann, S.; Renner, F. U.; Dehm, G.: Nanomechanical testing under environmental conditins of Fe-based metallic glasses. 22st International Symposium on Metastable Amorphous and Nanostructured Materials, ISMANAM 2015, Paris, France (2015)
Brinckmann, S.: Nanotribology and crack initiation. Institute for Materials Testing, Materials Science and Strength of Materials, University of Stuttgart, Stuttgart, Germany (2015)
Fink, C.; Brinckmann, S.; Shin, S.; Dehm, G.: Nanotribology and Microstructure Evolution in Pearlite. Frühjahrstagung der Sektion Kondensierte Materie der Deutschen Physikalischen Gesellschaft
, Berlin, Germany (2015)
Brinckmann, S.; Fink, C.; Dehm, G.: Roughness and Microstructure Development during Nanotribology in Austenite. DPG-Spring Meeting, Berlin, Germany (2015)
Brinckmann, S.: Shear deformation in FCC metals: Fundametal and applied research. Seminar at Institute of Materials Physics, Georg-August-Universität Göttingen, Göttingen, Germany (2014)
Brinckmann, S.: Nanotribology mechanisms due to microcontacts in Austenite. 3rd European Symposium on Friction, Wear and Wear Protection, Karlsruhe, Germany (2014)
Brinckmann, S.: Combining Atomistic and Dislocation Dynamics into a Concurrent Multiscale Model. Seminar zur Physik der kondensierten Materie, Institut für Theoretische und Angewandte Physik, Universität Stuttgart, Stuttgart, Germany (2013)
Brinckmann, S.: Deformation localization and strain hardening during micro shear experiments on gold in the SEM. Nanomechanical Testing in Materials Research and Development IV, Olhão (Algarve), Portugal (2013)
Brinckmann, S.: Joining 3D Dislocation Dynamics and 3D Molecular Dynamics into a Concurrent Multiscale Model. SES 50th Annual Technical Meeting and ASME-AMD Annual Summer Meeting, Providence, RI, USA (2013)
Brinckmann, S.: Discrete Disclination Dynamics in comparison to Discrete Dislocation Dynamics. SES 50th Annual Technical Meeting and ASME-AMD Annual Summer Meeting, Providence, RI, USA (2013)
Brinckmann, S.: Studying very short cracks with a 3D multiscale model. DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM), Regensburg, Germany (2013)
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
In this project we conduct together with Dr. Sandlöbes at RWTH Aachen and the department of Prof. Neugebauer ab initio calculations for designing new Mg – Li alloys. Ab initio calculations can accurately predict basic structural, mechanical, and functional properties using only the atomic composition as a basis.
The wide tunability of the fundamental electronic bandgap by size control is a key attribute of semiconductor nanocrystals, enabling applications spanning from biomedical imaging to optoelectronic devices. At finite temperature, exciton-phonon interactions are shown to exhibit a strong impact on this fundamental property.