Kim, S.-H.; Shin, K.; Zhou, X.; Jung, C.; Kim, H. Y.; Pedrazzini, S.; Conroy, M.; Henkelman, G.; Gault, B.: Atom probe analysis of BaTiO3 enabled by metallic shielding. Scripta Materialia 229, 115370 (2023)
Aota, L. S.; Jung, C.; Zhang, S.; Kim, S.-H.; Gault, B.: Revealing Compositional Evolution of PdAu Electrocatalyst by Atom Probe Tomography. ACS Energy Letters 8 (6), pp. 2824 - 2830 (2023)
Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Advanced Energy Materials 13 (13), 2204321 (2023)
Kim, S.-H.; Jun, H.; Jang, K.; Choi, P.-P.; Gault, B.; Jung, C.: Exploring the Surface Segregation of Rh Dopants in PtNi Nanoparticles through Atom Probe Tomography Analysis. The Journal of Physical Chemistry C 127 (46), pp. 22721 - 22725 (2023)
Singh, M. P.; Woods, E.; Kim, S.-H.; Jung, C.; Aota, L. S.; Gault, B.: Facilitating the Systematic Nanoscale Study of Battery Materials by Atom Probe Tomography through in-situ Metal Coating. Batteries & Supercaps 7 (2), e202300403 (2023)
Jung, C.; Jun, H.; Jang, K.; Kim, S.-H.; Choi, P.-P.: Tracking the Mn Diffusion in the Carbon-Supported Nanoparticles Through the Collaborative Analysis of Atom Probe and Evaporation Simulation. Microscopy and Microanalysis 28 (6), pp. 1841 - 1850 (2022)
Zhang, S.; Yu, Y.; Jung, C.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ STEM observation of thermoelectric materials under heating and biasing conditions. The 6th joint Sino-German workshop on advanced & correlative electron microscopy of catalysts, quantum phenomena & soft matter, Bad Honnef, Germany (2024)
Zhang, S.; Yu, Y.; Jung, C.; Wang, Z.; Mattlat, D. A.; Abdellaoui, L.; Scheu, C.: In situ microstructural observation and electrical transport measurements of PbTe thermoelectrics by transmission electron microscopy. International Conference on Thermoelectrics ICT, Krakow, Poland (2024)
Bhat, M. K.; Brink, T.; Ding, H.; Jung, C.; Best, J. P.; Dehm, G.: Influence of the Structure and Chemistry of Σ5 Grain Boundaries on Microscale Strengthening in Cu Bicrystals. TMS Annual Meeting and Exhibition 2024, Orlando, FL, USA (2024)
Jung, C.: Understanding of the property-structure relationship for thermoelectric materials through advanced characterization. Korea Electrotechnology Research Institute, Changwon, South Korea (2023)
Jung, C.: Investigation of interface between CIGS and buffer layer using atom probe tomography. Korea Institute of Energy Research, Daejeon, South Korea (2023)
Jung, C.: NbCoSn based half-Heusler compounds through crystallization of amorphous precursors. Kyungpook National University, Daegu, South Korea (2023)
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Nickel-based alloys are a particularly interesting class of materials due to their specific properties such as high-temperature strength, low-temperature ductility and toughness, oxidation resistance, hot-corrosion resistance, and weldability, becoming potential candidates for high-performance components that require corrosion resistance and good…
In this project, we investigate the phase transformation and twinning mechanisms in a typical interstitial high-entropy alloy (iHEA) via in-situ and interrupted in-situ tensile testing ...
Solitonic excitations with topological properties in charge density waves may be used as information carriers in novel types of information processing.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we employ a metastability-engineering strategy to design bulk high-entropy alloys (HEAs) with multiple compositionally equivalent high-entropy phases.
Low dimensional electronic systems, featuring charge density waves and collective excitations, are highly interesting from a fundamental point of view. These systems support novel types of interfaces, such as phase boundaries between metals and charge density waves.