Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Impact of asymmetric martensite and austenite nucleation and growth behavior on the phase stability and hysteresis of freestanding shape-memory nanoparticles. Physical Review Materials 2 (3), 030601 (2018)
Ko, W.-S.; Shim, J.-H.; Jung, W.-S.; Lee, B.-J.: Computational screening of alloying elements for the development of sustainable V-based hydrogen separation membranes. Journal of Membrane Science 497, pp. 270 - 281 (2016)
Ko, W.-S.; Grabowski, B.; Neugebauer, J.: Development and application of a Ni–Ti interatomic potential with high predictive accuracy of the martensitic phase transition. Physical Review B 92 (13), 134107 (2015)
Seol, J. B.; Ko, W.-S.; Bae, J. W.; Jo, Y. H.; Li, Z.; Choi, P.-P.; Raabe, D.; Kim, H. S.: Transition in boron boundary cohesion from effectiveness to harmfulness with respect to application temperatures: high-entropy alloys and Ni-based superalloys. 2nd International Conference on High-Entropy Materials (ICHEM 2018), Jeju, South Korea (2018)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…