Klemm, S. O.; Karschin, A.; Mechler, A. K.; Topalov, A. A.; Katsounaros, I.; Mayrhofer, K. J. J.: Corrigendum to “Time and potential resolved dissolution analysis of rhodium using a microelectrochemical flow cell coupled to an ICP-MS” [Journal of Electroanalytical Chemistry 677–680 (2012) 50–55] (S1572665712001865) (10.1016/j.jelechem.2012.05.006)). Journal of Electroanalytical Chemistry 693, p. 127 (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.