Bitzek, E.: The Origin of Deformation-Induced Topological Anisotropy in Silica Glass. International Conference on the Strength of Materials ICSMA 19, Metz, France (2022)
Meier de Andrade, A.; Bitzek, E.: Fracture in the Presence of Hydrogen - Influence of the Potential. The 11th International Conference on Multiscale Materials Modeling, Prague, Czech Republic (2024)
Meier de Andrade, A.; Bitzek, E.: Fracture in the Presence of Hydrogen - Influence of the Potential. The XXII Brazilian Materials Research Society (B-MRS) Meeting 2024, Santos, Brazil (2024)
Atila, A.: Influence of Structure and Topology on the Deformation Behavior and Fracture of Oxide Glasses. Dissertation, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) (2023)
Poul, M.; Huber, L.; Bitzek, E.; Neugebauer, J.: Systematic Structure Datasets for Machine Learning Potentials: Application to Moment Tensor Potentials of Magnesium and its Defects. arXiv (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…
Hydrogen embrittlement remains a strong obstacle to the durability of high-strength structural materials, compromising their performance and longevity in critical engineering applications. Of particular relevance is the effect of mobile and trapped hydrogen at interfaces, such as grain and phase boundaries, since they often determine the material’s…
Grain boundaries are one of the most prominent defects in engineering materials separating different crystallites, which determine their strength, corrosion resistance and failure. Typically, these interfaces are regarded as quasi two-dimensional defects and controlling their properties remains one of the most challenging tasks in materials…
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.