Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Zhu, L.-F.; Sha, G.; Ringer, S.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high resolution experiments to improve the understanding of advanced Mg-Y and Mg-RE alloys. 7th Annual Conference of the ARC Centre of Excellence for Design in Light Metals, Melbourne, VIC, Australia (2012)
Konijnenberg, P. J.; Zaefferer, S.; Raabe, D.: Advanced analysis of 3D EBSD data obtained by FIB tomography. NVvM 2012 Materials Science Meeting, Eindhoven, The Netherlands (2012)
Tasan, C. C.; Zaefferer, S.; Raabe, D.: In-situ investigations of small strain plasticity in dual-phase steel. 23rd International Congress of Theoretical and Applied Mechanics (ICTAM), Beijing, China (2012)
Zaefferer, S.; Chen, J.; Konijnenberg, P.: A study on origin and nature of shear bands in cold rolled Mg-3Y alloy using 3D EBSD. 9th Intern. Conference on Magnesium alloys and their applications, Vancouver, Canada (2012)
Zaefferer, S.: An overview on techniques for the measurements of plastic and elastic strain by EBSD and related techniques. EBSD usermeeting der DGK, Hannover, Germany (2012)
Zaefferer, S.: Advanced applications of SEM-based electron diffraction techniques for the characterization of deformation structures of new steels. E-MRS 2012, Strasbourg, France, Strasbourg, France (2012)
Zaefferer, S.: Dislocations in metals: Observations from the atomic scale to macroscopic dimensions. ICMS Workshop, “Open problems between micro and macro systems of agents and particles”, Eindhoven, The Netherlands (2012)
Ram, F.; Zaefferer, S.: Kikuchi Bandlet Method: A Method to Resolve the Source Point Position of an EBSD Pattern. 20th Annual meeting of the German Crystallographic Society, München, Germany (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
The Ni- and Co-based γ/γ’ superalloys are famous for their excellent high-temperature mechanical properties that result from their fine-scaled coherent microstructure of L12-ordered precipitates (γ’ phase) in an fcc solid solution matrix (γ phase). The only binary Co-based system showing this special type of microstructure is the Co-Ti system…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…
Laser Powder Bed Fusion (LPBF) is the most commonly used Additive Manufacturing processes. One of its biggest advantages it offers is to exploit its inherent specific process characteristics, namely the decoupling the solidification rate from the parts´volume, for novel materials with superior physical and mechanical properties. One prominet…