Wang, L.; Sam, H. C.; Ao, M.; Rohwerder, M.; Dong, C.: The effect of austenite phase transformation on hydrogen distribution and embrittlement mechanisms of heterogeneous martensite stainless steel manufactured by laser powder bed fusion. Corrosion Science 256, 113195 (2025)
Jovičević-Klug, M.; Brondin, C. A.; Caretta, A.; Bonnekoh, C.; Gossing, F.; Vogel, A.; Rieth, M.; McCord, J.; Rohwerder, M.; Jovičević-Klug, P.: Suppression of Cr nanoclusters and enrichments in Fe–Cr based alloys with cryogenic processing for future energy sector. Journal of Materials Research and Technology 36, pp. 9262 - 9273 (2025)
Khayatan, N.; Prabhakar, J. M.; Jalilian, E.; Madelat, N.; Terryn, H.; Rohwerder, M.: On the rate determining step of cathodic delamination of delamination-resistant organic coatings. Corrosion Science 239, 112396 (2024)
Azzam, W.; Subaihi, A.; Rohwerder, M.; Bashir, A.; Terfort, A.; Zharnikov, M.: Odd-even effects in aryl-substituted alkanethiolate SAMs: nonsymmetrical attachment of aryl unit and its impact on the SAM structure. Physical Chemistry Chemical Physics 26 (9), pp. 7563 - 7572 (2024)
Ravikumar, A.; Höche, D.; Feiler, C.; Lekka, M.; Salicio-Paz, A.; Rohwerder, M.; Prabhakar, J. M.; Zheludkevich, M.: Exploring the Effect of Microstructure and Surface Recombination on Hydrogen Effusion in Zn–Ni-Coated Martensitic Steels by Advanced Computational Modeling. Steel Research International 95 (2), 2300353 (2024)
Venkatachalam, D.; Govindaraj, Y.; Prabhakar, J. M.; Ganapathi, A.; Sakairi, M.; Rohwerder, M.; Neelakantan, L.: Smart release of turmeric as a potential corrosion inhibitor from a pH-responsive polymer encapsulated highly ordered mesoporous silica containers. Surfaces and Interfaces 45, 103883 (2024)
Jovičević-Klug, P.; Jovičević-Klug, M.; Thormählen, L.; McCord, J.; Rohwerder, M.; Godec, M.; Podgornik, B.: Austenite reversion suppression with deep cryogenic treatment: A novel pathway towards 3rd generation advanced high-strength steels. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 873, 145033 (2023)
Narasimha Sasidhar, K.; Zhou, X.; Rohwerder, M.; Ponge, D.: On the phase transformation pathway during localized grain boundary oxidation in an Fe-10 at% Cr alloy at 200°C. Corrosion Science 214, 111016 (2023)
Jovičević-Klug, P.; Rohwerder, M.: Sustainable New Technology for the Improvement of Metallic Materials for Future Energy Applications. Coatings 13 (11), 1822 (2023)
Jovičević-Klug, P.; Jovičević-Klug, M.; Tegg, L.; Seidler, D.; Thormählen, L.; Parmar, R.; Amati, M.; Gregoratti, L.; Cairney, J.; McCord, J.et al.; Rohwerder, M.; Podgornik, B.: Correlative surface and bulk analysis of deep cryogenic treatment influence on high-alloyed ferrous alloy. Journal of Materials Research and Technology 21, pp. 4799 - 4810 (2022)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…