Bieler, T. R.; Crimp, M. A.; Yang, Y.; Wang, L.; Eisenlohr, P.; Mason, D. E.; Liu, W.; Ice, G. E.: Strain Heterogeneity and Damage Nucleation at Grain Boundaries during Monotonic Deformation in Commercial Purity Titanium. Journal of Microscopy 61 (12), pp. 45 - 52 (2009)
Bieler, T. R.; Eisenlohr, P.; Roters, F.; Kumar, D.; Mason, D. E.; Crimp, M. A.; Raabe, D.: The role of heterogeneous deformation on damage nucleation at grain boundaries in single phase metals. International Journal of Plasticity 25 (9), pp. 1655 - 1683 (2009)
Eisenlohr, P.; Milička, K.; Blum, W.: Dislocation glide velocity in creep of Mg-alloys derived from dip tests. Materials Science and Engineering A 510-511, pp. 393 - 397 (2009)
Eisenlohr, P.; Tjahjanto, D. D.; Hochrainer, T.; Roters, F.; Raabe, D.: Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. International Journal of Materials Research 100 (4), pp. 500 - 509 (2009)
Kumar, P.; Kassner, M. E.; Blum, W.; Eisenlohr, P.; Langdon, T. G.: New observations on high-temperature creep at very low stresses. Materials Science and Engineering A 510-511, pp. 20 - 24 (2009)
Eisenlohr, P.; Sadrabadi, P.; Blum, W.: Quantifying the distributions of dislocation spacings and cell sizes. Journal of Materials Science 43, pp. 2700 - 2707 (2008)
Kumar, D.; Bieler, T. R.; Eisenlohr, P.; Mason, D. E.; Crimp, M. A.; Roters, F.; Raabe, D.: On Predicting Nucleation of Microcracks Due to Slip-Twin Interactions at Grain Boundaries in Duplex gamma-TiAl. Journal of Engineering and Materials Technology 130 (02), pp. 021012-1 - 021012-12 (2008)
Zeng, X. H.; Eisenlohr, P.; Blum, W.: Modelling the transition from strengthening to softening due to grain boundaries. Material Science and Engineering A 483-484, pp. 95 - 98 (2008)
Tjahjanto, D. D.; Roters, F.; Eisenlohr, P.: Iso-Work-Rate Weighted-Taylor Homogenization Scheme for Multiphase Steels Assisted by Transformation-induced Plasticity Effect. Steel Research International 78 (10/11), pp. 777 - 783 (2007)
Eisenlohr, P.; Blum, W.: Bridging steady-state deformation behavior at low and high temperature by considering dislocation dipole annihilation. Material Science and Engineering A 400 - 401, pp. 175 - 181 (2005)
Eisenlohr, P.; Winning, M.; Blum, W.: Migration of subgrain boundaries under stress in bi- and multi-granular structures. Physica Status Solidi 200 (2), pp. 339 - 345 (2003)
Roters, F.; Eisenlohr, P.; Bieler, T. R.; Raabe, D.: Crystal Plasticity Finite Element Methods in Materials Science and Engineering. Wiley-VCH, Weinheim (2010), 197 pp.
Shanthraj, P.; Diehl, M.; Eisenlohr, P.; Roters, F.; Raabe, D.: Spectral Solvers for Crystal Plasticity and Multi-physics Simulations. In: Handbook of Mechanics of Materials, pp. 1347 - 1372 (Eds. Hsueh, C.-H.; Schmauder, S.; Chen, C.-S.; Chawla, K. K.; Chawla, N. et al.). Springer, Singapore (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.