Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. International Workshop on Advanced In Situ Microscopies
of Functional Nanomaterials and Devices (IAMnano 2019), Düsseldorf, Germany (2019)
Peter, N. J.; Liebscher, C.; Kirchlechner, C.; Dehm, G.: Ag segregation induced nanofaceting transition of an asymmetric tilt grain boundary in Cu and its impact on plastic deformation mechanisms. PICO 2019, Vaals, The Netherlands (2019)
Ahmad, S.; Meiners, T.; Frolov, T.; Liebscher, C.; Dehm, G.: Grain boundary structure and phase transitions in Cu and Al [111] tilt grain boundaries. International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, IAMNano, Düsseldorf, Germany (2019)
Lee, S.; Duarte, M. J.; Liebscher, C.; Oh, S. H.; Dehm, G.: Dislocation Plasticity in Single Crystal FeCrCoMnNi HEA by in-situ TEM Deformation. Schöntal Symposium - Dislocation based plasticity, Schöntal, Germany (2018)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Effect of the atomistic grain boundary structure on dislocation interaction in copper. Gordon Research Conference (GRC) 2016, Thin Film & Small Scale Mechanical Behavior
, Lewiston, ME, USA (2016)
Meiners, T.; Liebscher, C.; Dehm, G.: Atomic structure and segregation phenomena at copper grain boundaries. EMC2016, The 16th European Microscopy Congress, Lyon, France (2016)
Peter, N. J.; Kirchlechner, C.; Liebscher, C.; Dehm, G.: Beam induced atomic migration at Ag containing nanofacets at an asymmetric Cu grain boundary. European Microscopy Congress (EMC) 2016
, Lyon, France (2016)
Liebscher, C.; Radmilovic, V. R.; Dahmen, U.; Asta, M. D.; Ghosh, G.: Hierarchical Microstructure of Ferritic Superalloys. IAMNano 2015 - The International Workshop on Advance
and In-situ Microscopies of Functional Nanomaterials and
Devices, Hamburg, Germany (2015)
Dehm, G.; Liebscher, C.; Völker, B.; Scheu, C.: Organizer of the “IAMNano 2019 Düsseldorf” - International Workshop on Advanced In Situ Microscopies of Functional Nanomaterials and Devices. (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.