Bueno Villoro, R.; Zavanelli, D.; Jung, C.; Mattlat, D. A.; Naderloo, R. H.; Pérez, N. A.; Nielsch, K.; Snyder, G. J.; Scheu, C.; He, R.et al.; Zhang, S.: Grain Boundary Phases in NbFeSb Half-Heusler Alloys: A New Avenue to Tune Transport Properties of Thermoelectric Materials. Microscopy of semiconducting materials conference, Cambridge, UK (2023)
Bueno Villoro, R.; Luo, T.; Bishara, H.; Abdellaoui, L.; Gault, B.; Wood, M.; Snyder, G. J.; Scheu, C.; Zhang, S.: Effect of grain boundaries on electrical conductivity in Ti(Co,Fe)Sb half Heusler thermoelectrics. 719. WE-Heraeus-Seminar, Understanding Transport Processes on the Nanoscale for Energy Harvesting Devices, online (2021)
Changizi, R.; Lim, J.; Zhang, S.; Schwarz, T.; Scheu, C.: Characterization of KCa2Nb3O10. IAMNano 2019, International Workshop on Advanced and In-situ Microscopies of Functional Nanomaterials and Devices, Düsseldorf, Germany (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Cathodoluminescence and the structural study of Lanthanide-doped oxides. Workshop on Transmission Electron Microscopy (E-MAT), Antwerp, Belgium (2019)
Changizi, R.; Zhang, S.; Schwarz, T.; Scheu, C.: Study of the chemical composition and the luminescent spectra of Lanthanide-doped oxides. E-MRS 2019 Spring Meeting, Nice, France (2019)
Zhang, S.; Diehl, L.; Lotsch, B. V.; Scheu, C.: NiOx cocatalysts on nanosheets for photocatalytic water splitting. nanoGe Fall Meeting 2018, Torremolinos, Spain (2018)
Zhang, S.; Scheu, C.: Supervision on multi-dimensional data from electron microscopy. BiGmaxWorkshop 2018 on Big-Data-DrivenMaterials Science, Irsee, Germany (2018)
Garzón-Manjón, A.; Zahn, G.; Kuchshaus, C.; Zhang, S.; Ludwig, A.; Scheu, C.: Observation of the Structural Transformation of Multinary Nanoparticles by In-situ Transmission Electron Microscopy. EMAT Workshop on Transmission Electron Microscopy, University of Antwerp, Antwerp, Belgium (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…