Neugebauer, J.: Solvent-controlled single atom dissolution, surface alloying and Wulff shapes of nanoclusters; Electrocatalysis at electrocodes in the dry. Workshop: Research Area III, ZEMOS, Bochum, Germany (2016)
Neugebauer, J.: Collective variable description of crystal anharmonicity. IPAM Workshop II: Collective Variables in Classical Mechanics, Los Angeles, CA, USA (2016)
Neugebauer, J.: Modelling structural materials in extreme environments by ab initio guided multiscale simulations. International Workshop “Theory and Modelling of Materials in Extreme Environment", Abingdon, UK (2016)
Neugebauer, J.: Ab initio thermodynamic description of advanced structural materials: Status and challenges. Workshop “Ab-initio Based Modeling of Advanced Materials”, Yekaterinburg, Russia (2016)
Neugebauer, J.: Stahl: Wie ein alter Werkstoff sich immer wieder neu erfindet und damit Wissenschaft und Wirtschaft beflügelt. 129. Versammlung der Gesellschaft der deutschen Naturforscher und Ärzte, Greifswald, Germany (2016)
Dutta, B.; Hickel, T.; Neugebauer, J.: Intermartensitic Phase Boundaries in Ni–Mn–Ga Alloys: A Viewpoint from Ab initio Thermodynamics. 5th International Conference on Ferromagnetic Shape Memory Alloys, Sendai, Japan (2016)
Zendegani, A.; Körmann, F.; Hickel, T.; Hallstedt, B.; Neugebauer, J.: Thermodynamic properties of the quaternary Q phase in Al–Cu–Mg–Si: a combined ab-initio, phonon and compound energy formalism approach. International Conference on Advanced Materials Modelling (ICAMM), Rennes, France (2016)
Neugebauer, J.: Ab initio description of defects in materials under extreme conditions. 2016 Joint ICTP-CAS-IAEA School and Workshop on Plasma-Material Interaction in Fusion Devices, Hefei, China (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…