Po, G.; Admal, N. C.; Svendsen, B.: Non-local Thermoelasticity Based on Equilibrium Statistical Thermodynamics. Journal of Elasticity 139, pp. 37 - 59 (2020)
Kochmann, J.; Wulfinghoff, S.; Ehle, L.; Mayer, J.; Svendsen, B.: Efficient and accurate two-scale FE-FFT-based prediction of the effective material behavior of elasto-viscoplastic polycrystals. Computational Mechanics 61, pp. 751 - 764 (2018)
Alipour, A.; Wulfinghoff, S.; Bayat, H. R.; Reese, S.; Svendsen, B.: The concept of control points in hybrid discontinuous Galerkin methods—Application to geometrically nonlinear crystal plasticity. International Journal for Numerical Methods in Engineering 114 (5), pp. 557 - 579 (2018)
Svendsen, B.; Shanthraj, P.; Raabe, D.: Finite-deformation phase-field chemomechanics for multiphase, multicomponent solids. Journal of the Mechanics and Physics of Solids 112, pp. 619 - 636 (2018)
Dusthakar, D. K.; Menzel, A.; Svendsen, B.: Laminate-based modelling of single and polycrystalline ferroelectric materials – application to tetragonal barium titanate. Mechanics of Materials 117, pp. 235 - 254 (2018)
Hütter, M.; Svendsen, B.: Formulation of strongly non-local, non-isothermal dynamics for heterogeneous solids based on the GENERIC with application to phase-field modeling. Materials Theory (1), 4, pp. 1 - 20 (2017)
Mianroodi, J. R.; Hunter, A. G. M.; Beyerlein, I. J.; Svendsen, B.: Theoretical and computational comparison of models for dislocation dissociation and stacking fault/core formation in fcc crystals. Journal of the Mechanics and Physics of Solids 95, pp. 719 - 741 (2016)
Kochmann, J.; Wulfinghoff, S.; Reese, S.; Mianroodi, J. R.; Svendsen, B.: Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior. Computer Methods in Applied Mechanics and Engineering 305, pp. 89 - 110 (2016)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…
Conventional alloy development methodologies which specify a single base element and several alloying elements have been unable to introduce new alloys at an acceptable rate for the increasingly specialised application requirements of modern technologies. An alternative alloy development strategy searches the previously unexplored central regions…
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…