Garcia, L. F.; Garcia, J.; Kostka, A.; Weber, S.; Lammer, A.: Wear Behaviour of Cooper-Iron-Cobalt Diamond Tool Bonding Matrices Reinforced with Hardmetal Granulates. 9th Intern. Conference on the Science of Hard Materials, Montego Bay, Jamaica (2008)
Barbatti, C.; Pinto, H.; di Prinzio, A.; Staia, M.; Pitonak, R.; Garcia, J.; Pyzalla, A. R.: Influence of Microblasting on the Microstructure and Residual Stresses of CVD k-AlO3 Coated Hardmetals. MECASENS, Wien (2007)
Barbatti, C.; Pinto, H.; di Prinzio, A.; Staia, M.; Pitonak, R.; Garcia, J.; Pyzalla, A. R.: Influence of Microblasting on the Microstructure and Residual Stresses of CVD k-Al2O3 Coated Hardmetals. EUROMAT 2007, Nürnberg (2007)
Barbatti, C.; Garcia, J.; Pyzalla, A. R.: Development and Characterization of PM Components with Optimum Properties. PM Training Course, Kosice/Slovakia (2007)
Barbatti, C.; Sket, F.; Eyidi, D.; Garcia, J.; Pyzalla, A.: SEM and TEM Investigations of (W,Ti)C-(Co,Ni,Fe) Graded Hardmetals. 12. Internationale Metallographie-Tagung, Leoben, Österreich (2006)
Garcia, J.; Kipperer, K.; Barbatti, C.; Pyzalla, A. R.: Study of Microstructure and Kinetics of FCC-Free Surface Layer Formation in Novel Hardmetals with Complex Co/Ni/Fe Binders. Euromat 2007, Nürnberg, Germany (2007)
Barbatti, C.; Sket, F.; di Prinzio, A.; Staia, M.; Garcia, J.; Pyzalla, A. R.: Influence of Binder Composition, Nitridation and Treatment of Coatings on the Microstructure; Corrosion and Wear of (W,Ti)C-(Ta,Nb)C-Co/Fi/Fe Hardmetals. PM Training Course, Kosice, Slovakia (2007)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…