Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Stechmann, G.; Zaefferer, S.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Hamburg, Germany (2015)
Zaefferer, S.; Mandal, S.; Stechmann, G.; Bozzolo, N.: Correlative measurement of the 5-parameter grain boundary character and its physical and chemical properties. RMS EBSD 2014, London, UK (2014)
Stechmann, G.: A Study on the Microstructure Formation Mechanisms and Functional Properties of CdTe Thin Film Solar Cells Using Correlative Electron Microscopy and Atomistic Simulations. Dissertation, RWTH Aachen, Aachen, Germany (2017)
Stechmann, G.: Compatibility between Molten Salts and Materials in Concentrated Solar Power Plants. Diploma, École Nationale Supérieure de Chimie de Lille, Lille, France (2013)
Stechmann, G.: Crystallographic and Electronic Characterization of Grain Boundaries in Cd–Te Thin Film Solar Cell. Master, University of Lille I, University of Science and Technology, Lille, France (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.