Altin, A.; Wohletz, S.; Krieger, W.; Groche, P.; Erbe, A.: Effect of surface condition on the bond strength between aluminum and steel joint in cold welding. CETAS 2015, Düsseldorf, Germany (2015)
Altin, A.; Wohletz, S.; Krieger, W.; Kostka, A.; Groche, P.; Erbe, A.: Nanoscale understanding of bond formation during cold welding of aluminum and steel. 6th International Conference on Tribology in Manufacturing Processes & Joining by Plastic Deformation, Darmstadt, Germany (2014)
Altin, A.; Erbe, A.; Ritter, H.; Rohwerder, M.: Controlled release of inhibitors from composite organic coatings: A “green” way of corrosion protection. EUROCORR 2013, Estoril, Portugal (2013)
Altin, A.; Erbe, A.; Ritter, H.; Rohwerder, M.: Controlled release of inhibitors from composite organic coatings: A “green” way of corrosion protection. International Conference on self-Healing Materials, Ghent, Belgium (2013)
Vimalanandan, A.; Altin, A.; Tran, T. H.; Rohwerder, M.: Conducting Polymers for Corrosion Protection - Raspberry like shaped ICP “pigments”. Gordon Research Conference Corrosion-Aqueous, New London, NH, USA (2012)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.