Chen, T.; Lu, W.; Li, J.; Chen, S.; Li, C.; Weng, G. J.: Tailoring tensile ductility of thin film by grain size graded substrates. International Journal of Solids and Structures 166, pp. 124 - 134 (2019)
Liu, C.; Lu, W.; Weng, G. J.; Li, J.: A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 756, pp. 284 - 290 (2019)
Li, J.; Weng, G. J.; Chen, S.; Wu, X.: On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity 88, pp. 89 - 107 (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.