Lübke, A.; Loza, K.; Patnaik, R.; Enax, J.; Raabe, D.; Prymak, O.; Fabritius, H.-O.; Gaengler, P.; Epple, M.: Reply to the ‘Comments on “Dental lessons from past to present: ultrastructure and composition of teeth from plesiosaurs, dinosaurs, extinct and recent sharks”’ by H. Botella et al., RSC Adv., 2016, 6, 74384–74388. RSC Advances 7 (11), pp. 6215 - 6222 (2017)
Prymak, O.; Stein, F.: The Ternary Cr–Al–Nb Phase Diagram: Experimental Investigations of Isothermal Sections at 1150, 1300 and 1450 °C. Journal of Alloys and Compounds 513, pp. 378 - 386 (2012)
Prymak, O.; Stein, F.: Solidification and High-Temperature Phase Equilibria in the Fe–Al-rich Part of the Fe–Al–Nb System. Intermetallics 18 (7), pp. 1322 - 1326 (2010)
Prymak, O.; Stein, F.; Kerkau, A.; Ormeci, A.; Kreiner, G.; Frommeyer, G.; Raabe, D.: Phase equilibria in the ternary Nb–Cr–Al system and site occupation in the hexagonal C14 Laves phase Nb(AlxCr1–x)2. In: Materials Research Society Symposium Proceedings, pp. 499 - 504 (Ed. Proceedings, M. S.). Materials Research Society Symposium. (2009)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.