El-Zoka, A.; Kim, S.-H.; Khanchandani, H.; Stephenson, L.; Gault, B.: Advances in Cryo-Atom Probe Tomography Studies on Formation of Nanoporous Metals by Dealloying (Digital Presentation). In ECS Meeting Abstracts, MA2022-01 (47), p. 1983. The Electrochemical Society (2022)
Krämer, M.; Favelukis, B.; El-Zoka, A.; Sokol, M.; A. Rosen, B.; Eliaz, N.; Kim, S.-H.; Gault, B.: Compositional mapping of 2D MXenes at the near-atomic-scale by atom probe tomography. EUROMXENE Congress 2024, Valencia, Spain (2024)
Woods, E.; Aota, L. S.; Schwarz, T.; Kim, S.-H.; Douglas, J. O.; Singh, M. P.; Gault, B.: In-situ cryogenic protective layers and metal coatings in cryogenic FIB. IMC20 - 20th International Microscopy Congress - Pre-congress workshop, Cryogenic Atom Probe Tomography, Busan, South Korea (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the activation of hydrogen evolution electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Korean Institute for Energy Research, Daejeon, South Korea (2023)
Zhang, S.; Kim, S.-H.; Mingers, A. M.; Gault, B.; Scheu, C.: Operando Study on the corrosion of photo-electrocatalysts. NRF-DFG meeting “Electrodes for direct sea-water splitting and microstructure based stability analyses”, Kangwon National University, Chuncheon-si, South Korea (2023)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…