Schmidt, W. G.; Wippermann, S. M.; Rauls, E.; Gerstmann, U.; Sanna, S.; Thierfelder, C.; Landmann, M.; dos Santos, L. S.: Si(111)-In Nanowire Optical Response from Large-scale Ab Initio Calculations. In: High Performance Computing in Science and Engineering 2010, pp. 149 - 158. 14th Annual Results and Review Workshop on High Performance Computing in Science and Engineering, Stuttgart University, Stuttgart, Germany, October 04, 2010 - October 05, 2010. Springer-Verlag Berlin, Berlin, Germany (2011)
Schmidt, W. G.; Blankenburg, S.; Rauls, E.; Wippermann, S. M.; Gerstmann, U.; Sanna, S.; Thierfelder, C.; Koch, N.; Landmann, M.: Understanding Long-range Indirect Interactions Between Surface Adsorbed Molecules. In: High Performance Computing in Science and Engineering 2009, pp. 75 - 84. 12th Results and Review Workshop on High Performance Computing in
Science and Engineering, Stuttgart University , Stuttgart, Germany, October 08, 2009 - October 09, 2009. (2010)
Wippermann, S. M.; Schmidt, W. G.; Thissen, P.; Grundmeier, G.: Dissociative and molecular adsorption of water on alpha-Al2O3(0001). In: Physica Status Solidi C, Vol. 7, pp. 137 - 140. 12th International Conference on Formation of Semiconductor Interfaces, Weimar, Germany, July 05, 2009 - July 10, 2009. Wiley-VCH, Weinheim (2010)
Schmidt, W. G.; Blankenburg, S.; Wippermann, S. M.; Hermann, A. M.; Hahn, P.; Preuss, M.; Seino, K.; Bechstedt, F.: Anomalous water optical absorption: Large-scale first-principles simulations. In: High Performance Computing in Science and Engineering '06, pp. 49 - 58. 9th Results and Review Workshop on High Performance Computing in Science and Engineering, Stuttgart University, Stuttgart, Germany, October 19, 2006 - October 20, 2006. (2007)
Wippermann, S. M.; Schmidt, W. G.; Oh, D. M.; Yeom, H. W.: Impurity-mediated early condensation of an atomic layer electronic crystal: oxygen-adsorbed In/Si(111)-(4×1)/(8×2). DPG Spring Meeting 2015, Berlin, Germany (2015)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4×1)/(8×2): a fascinating model system for one-dimensional conductors. DPG March Meeting 2014, Berlin, Germany (2014)
Wippermann, S. M.; Schmidt, W. G.: In/Si(111)-(4x1)/(8x2): A fascinating model system for one-dimensional conductors. DPG Spring Meeting, Dresden, Germany (2014)
Wippermann, S. M.; Oh, D. M.; Yeom, H. W.; Schmidt, W. G.: Oxygen adsorption on the In/Si(111) nanowire array: structure and influence on metal insulator transition. DPG Spring Meeting, Dresden, Germany (2014)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
The Atom Probe Tomography group in the Microstructure Physics and Alloy Design department is developing integrated protocols for ultra-high vacuum cryogenic specimen transfer between platforms without exposure to atmospheric contamination.
Many important phenomena occurring in polycrystalline materials under large plastic strain, like microstructure, deformation localization and in-grain texture evolution can be predicted by high-resolution modeling of crystals. Unfortunately, the simulation mesh gets distorted during the deformation because of the heterogeneity of the plastic…
Here, we aim to develop machine-learning enhanced atom probe tomography approaches to reveal chemical short/long-range order (S/LRO) in a series of metallic materials.
While Density Functional Theory (DFT) is in principle exact, the exchange functional remains unknown, which limits the accuracy of DFT simulation. Still, in addition to the accuracy of the exchange functional, the quality of material properties calculated with DFT is also restricted by the choice of finite bases sets.
Complex simulation protocols combine distinctly different computer codes and have to run on heterogeneous computer architectures. To enable these complex simulation protocols, the CM department has developed pyiron.
The structures of grain boundaries (GBs) have been investigated in great detail. However, much less is known about their chemical features, owing to the experimental difficulties to probe these features at the near-atomic scale inside bulk material specimens. Atom probe tomography (APT) is a tool capable of accomplishing this task, with an ability…