Jörg, T.; Cordill, M. J.; Franz, R.; Kirchlechner, C.; Többens, D. M.; Winkler, J.; Mitterer, C.: Thickness dependence of the electro-mechanical response of sputter deposited Mo thin films on polyimide: Insights from in situ synchrotron diffraction tensile tests. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 697, pp. 17 - 23 (2017)
Cordill, M. J.; Marx, V. M.; Kirchlechner, C.: Ductile film delamination from compliant substrates using hard overlayers. Thin Solid Films 571 (P2), pp. 302 - 307 (2014)
Cordill, M. J.; Taylor, A. A.; Berger, J.; Schmidegg, K.; Dehm, G.: Robust mechanical performance of chromium-coated polyethylene terephthalate over a broad range of conditions. Philosophical Magazine 92 (25-27), pp. 3346 - 3362 (2012)
Taylor, A. A.; Cordill, M. J.; Dehm, G.: On the limits of the interfacial yield model for fragmentation testing of brittle films on polymer substrates. Philosophical Magazine 92 (25-27), pp. 3363 - 3380 (2012)
Taylor, A. A.; Edlmayr, V.; Cordill, M. J.; Dehm, G.: The effect of temperature and strain rate on the periodic cracking of amorphous AlxOy films on Cu. Surface and Coatings Technology 206 (7), pp. 1855 - 1859 (2011)
Taylor, A. A.; Edlmayr, V.; Cordill, M. J.; Dehm, G.: The effect of film thickness variations in periodic cracking: Analysis and experiments. Surface and Coatings Technology 206 (7), pp. 1830 - 1836 (2011)
Cordill, M. J.; Schmidegg, K.; Dehm, G.: Interface failure and adhesion measured by focused ion beam cutting of metal-polymer interfaces. Philosophical Magazine Letters 91 (8), pp. 530 - 536 (2011)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project we study the development of a maraging steel alloy consisting of Fe, Ni and Al, that shows pronounced response to the intrinsic heat treatment imposed during Laser Additive Manufacturing (LAM). Without any further heat treatment, it was possible to produce a maraging steel that is intrinsically precipitation strengthened by an…
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.