Grabowski, B.; Wippermann, S. M.; Glensk, A.; Hickel, T.; Neugebauer, J.: Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au. DPG Spring Meeting 2015, Berlin, Germany (2015)
Neugebauer, J.: Quantum mechanical design of structural materials on the computer. Colloquium at Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany (2015)
Neugebauer, J.: Introduction to density functional Theory from a materials science perspective. ICAMS course “Multiscale Modelling”, Bochum, Germany (2015)
Dey, P.; Nazarov, R.; Yao, M.; Friák, M.; Hickel, T.; Neugebauer, J.: Adaptive C content in coherently strained kappa-carbides - An ab initio explanation of atom probe tomography data. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Dutta, B.; Körmann, F.; Hickel, T.; Neugebauer, J.: The itinerant coherent potential approximation for phonons: Role of fluctuations for systems with magnetic disorder. 2nd German-Austrian Workshop, Kirchdorf, Austria (2015)
Gupta, A.; Dutta, B.; Hickel, T.; Neugebauer, J.: Thermodynamic phase stability in the Al–Sc system using first principles methods. 2nd German-Austrian Workshop on "Computational Materials Science on Complex Energy Landscapes", Kirchdorf, Austria (2015)
Hickel, T.; Nazarov, R.; McEniry, E.; Dey, P.; Neugebauer, J.: Ab initio insights into the interaction of hydrogen with precipitates in steels. Workshop on Hydrogen Embrittlement and Sour Gas Corrosion 2015, Düsseldorf, Germany (2015)
Neugebauer, J.: Ab Initio Thermodynamics: A Novel Route to Design Structural Materials with Superior Mechanical Properties. TMS-MEMA Conference, Doha, Katar (2015)
Neugebauer, J.: Design and discovery of structural materials on the computer: Prospects and challenges. Colloquium at Universität Magdeburg, Magdeburg, Germany (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.