Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Iron Substrates Borided with Ni2B Particles by Laser-Induced Surface-Alloying. Zeitschrift für Metallkunde 90 (11), pp. 920 - 929 (1999)
Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe (Materials Resaerch Symposium Proceedings, Phase Transformations and Systems Driven far from Equilibrium, 481). MRS Fall Meeting´97, Boston, MA, USA. (2001)
Rashkova, B.; Cohen, S. S.; Goren-Muginstein, G.; Bamberger, M. S.; Dehm, G.: Analytical and high resolution TEM analysis of precipitation hardening in Mg–Zn–Sn alloys. In: Proceedings of the 7th Multinational Congress on Microscopy 2005, pp. 183 - 184 (Eds. Ceh, M.; Drazic, G.; Fidler, S.). 7th Multinational Congress on Microscopy 2005, Portorož, Slovenia, June 26, 2005 - June 30, 2005. (2005)
Cohen, S. S.; Goren-Muginstein, G. R.; Avraham, S.; Dehm, G.; Bamberger, M. S.: Phase formation, precipitation and strengthening mechanisims in Mg–Zn–Sn and Mg–Zn–Sn–Ca alloys. In: Symposium on Magnesium Technology 2004, pp. 301 - 305. TMS Annual Meeting, Charlotte, NC, USA, March 14, 2004 - March 18, 2004. (2004)
Dehm, G.; Bamberger, M. S.: Microstructure and Properties of Ferrous Substrates Laser-Alloyed with Boride Particles. In: Proc. of the European Conference on Laser Treatment of Materials, pp. 221 - 226 (Ed. Mordike, B. L.). ECLAT 98, Hannover, Germany, September 22, 1998 - September 23, 1998. Werkstoff-Informationsgesellschaft mbH, Frankfurt, Germany (1998)
Medres, B.; Shepeleva, L.; Ryk, G.; Dehm, G.; Bamberger, M. S.; Kaplan, W. D.: The Pecularities of Steels Laser Treatment with CrB2 and Ni2B Powders. In: ICALEO '98: laser materials processing conference: proceedings, Vol. 2, pp. D51 - D57. International Congress on Applications of Lasers and Electro-Optics’98, Orlando, FL, USA. (1998)
Dehm, G.; Scheu, C.; Bamberger, M. S.: Microstructure of Ni2B Laser-Induced Surface-Alloyed α-Fe. In: Laser Materials Processing, Vol. 83a, pp. 128 - 137. International Congress on Applications of Lasers and Electro-Optics’97, San Diego, CA, USA, 1997. (1997)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.
The unpredictable failure mechanism of White Etching Crack (WEC) formation in bearing steels urgently demands in-depth understanding of the underlying mechanisms in the microstructure. The first breakthrough was achieved by relating the formation of White Etching Areas (WEAs) to successive WEC movement.
The atomic arrangements in extended planar defects in different types of Laves phases is studied by high-resolution scanning transmission electron microscopy. To understand the role of such defect phases for hydrogen storage, their interaction with hydrogen will be investigated.
The mechanical properties of bulk CrFeCoNi compositionally complex alloys (CCA) or high entropy alloys (HEA) are widely studied in literature [1]. Notably, these alloys show mechanical properties similar to the well studied quinary CrMnFeCoNi [2] . Nevertheless, little is known about the deformation mechanisms and the thermal behavior of these…