Kawano, T.; Renner, F. U.: Studies on Wetting Behaviour of Hot-dip Galvanizing Process by use of Model Specimens with Tailored Surface Oxides. Surf. Int. Anal. 44 (8), pp. 1009 - 1012 (2012)
Kawano, T.; Renner, F. U.: Tailoring Model Surface and Wetting Experiment for a Fundamental Understanding of Hot-dip Galvanizing. ISIJ International 51, 10, pp. 1703 - 1709 (2011)
Kawano, T.; Renner, F. U.: Tailoring Model Surfaces and Wettability Measurement for a Fundamental Understanding of Hot-dip Galvanizing. DPG Meeting, Regensburg, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the current study is to investigate electrochemical corrosion mechanisms by examining the metal-liquid nanointerfaces. To achieve this, corrosive fluids will be strategically trapped within metal structures using novel additive micro fabrication techniques. Subsequently, the nanointerfaces will be analyzed using cryo-atom probe…
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We plan to investigate the rate-dependent tensile properties of 2D materials such as metal thin films and PbMoO4 (PMO) films by using a combination of a novel plan-view FIB based sample lift out method and a MEMS based in situ tensile testing platform inside a TEM.
The main aspect of this project is to understand how hydrogen interacts with dislocations/ stacking faults at the stress concentrated crack tip. A three-point bending test has been employed for this work.