Dorner, D.; Zaefferer, S.; Raabe, D.: Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal. Acta Materialia 55, pp. 2519 - 2530 (2007)
Kobayashi, S.; Zaefferer, S.; Raabe, D.: Relative Importance of Nucleation vs. Growth for Recrystallisation in Particle-containing Fe3Al Alloys. Materials Science Forum 550, not specified, pp. 345 - 350 (2007)
Wright, S. I.; Zaefferer, S.: Three Dimensional Orientation Microscopy Electron Backscatter Diffraction in a combined FIB/SEM. GIT Imaging & Microscopy 4, pp. 40 - 41 (2007)
Zaefferer, S.: On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107, pp. 254 - 266 (2007)
Dorner, D.; Zaefferer, S.; Lahn, L.; Raabe, D.: Overview of Microstructure and Microtexture Development in Grain-oriented Silicon Steel. Journal of Magnetism and Magnetic Materials 304 (2), pp. 183 - 186 (2006)
Yi, S. B.; Zaefferer, S.; Brokmeier, H. G.: Mechanical behaviour and microstructural evolution of magnesium alloy AZ31 in tension at different temperatures. Materials Science and Engineering: A 424 (1-2), pp. 275 - 281 (2006)
Zaafarani, N.; Raabe, D.; Singh, R. N.; Roters, F.; Zaefferer, S.: Three dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations. Acta Materialia 54 (7), pp. 1707 - 1994 (2006)
Bastos, A.; Zaefferer, S.; Raabe, D.; Schuh, C.: Characterization of the Microstructure and Texture of Nanostructured Electrodeposited NiCo by use of Electron Backscatter Diffraction (EBSD). Acta Materialia 54, pp. 2451 - 2462 (2006)
Kobayashi, S.; Zaefferer, S.: Creation of Fine-grained and Deformed Structure with Fine Carbide Particles in a Fe3Al–Cr–Mo–C Alloy. Intermetallics 14 (10-11), pp. 1252 - 1256 (2006)
Bastos, A.; Raabe, D.; Zaefferer, S.; Schuh, C.: Characterization of Nanostructured Electrodeposited NiCo Samples by use of Electron Backscatter Diffraction (EBSD). Mater. Res. Soc. Sympos. Proc. 880E, BB1.3. (2005)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Konrad, J.; Zaefferer, S.; Schneider, A.: Investigation of nucleation mechanisms of recrystallization in warm rolled Fe3Al base alloys. Materials Science Forum 467-470, pp. 75 - 80 (2004)
Zaefferer, S.: Charactérisation de la microtexture: Quand faut-il utiliser le microscope électronique à transmission? L'Analyse EBSD, Principes et Applications, pp. 161 - 170 (2004)
Zaefferer, S.: Investigation of the Bainitic Phase Transformation in a Low Alloyed TRIP Steel Using EBSD and TEM. TMS Letters 1 (7), pp. 153 - 154 (2004)
Zaefferer, S.; Ohlert, J.; Bleck, W.: A study of microstructure, transformation mechanisms and correlation between microstructure and mechanical properties of a low alloyed TRIP steel. Acta Materialia 52, pp. 2765 - 2778 (2004)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Project A02 of the SFB1394 studies dislocations in crystallographic complex phases and investigates the effect of segregation on the structure and properties of defects in the Mg-Al-Ca System.
Within this project, we will investigate the micromechanical properties of STO materials with low and higher content of dislocations at a wide range of strain rates (0.001/s-1000/s). Oxide ceramics have increasing importance as superconductors and their dislocation-based electrical functionalities that will affect these electrical properties. Hence…
In this project, we aim to achieve an atomic scale understanding about the structure and phase transformation process in the dual-phase high-entropy alloys (HEAs) with transformation induced plasticity (TRIP) effect. Aberration-corrected scanning transmission electron microscopy (TEM) techniques are being applied ...
Grain boundaries are one of the most important constituents of a polycrystalline material and play a crucial role in dictating the properties of a bulk material in service or under processing conditions. Bulk properties of a material like fatigue strength, corrosion, liquid metal embrittlement, and others strongly depend on grain boundary…