Hickel, T.; Al-Zubi, A.; Neugebauer, J.: Chemical Trends for Phase Transitions in Magnetic Shape Memory Alloys Derived from First Principles. TMS2011, San Diego, CA, USA (2011)
von Pezold, J.; Udyansky, A.; Aydin, U.; Hickel, T.; Neugebauer, J.: Strain-Induced Metal-Hydrogen Interactions across the First Transition Series – An Ab Initio Study of Hydrogen Embrittlement. TMS 2011 Meeting, San Diego, CA, USA (2011)
Neugebauer, J.: Ab initio based modeling of metallic alloys: From a predictive thermodynamic description to tailored mechanical properties. Colloquium at University of California-Santa Barbara, Santa Barbara, CA, USA (2011)
Race, C. P.; von Pezold, J.; Neugebauer, J.: Grain Boundary Kinetics in Molecular Dynamics: The Effect of the Driving Force on Mobility and Migration Mechanisms. TMS 2011, San Diego, CA, USA (2011)
Sandlöbes, S.; Friák, M.; Dick, A.; Zaefferer, S.; Pei, Z.; Neugebauer, J.; Raabe, D.: Combining ab initio calculations and high-resolution experiments to understand advanced Mg alloys. German-Korean workshop on the “Production and industrial applications of semi-finished Mg products”, Irsee, Germany (2011)
Todorova, M.; Neugebauer, J.: On the accuracy of ion hydration energies - An ab initio study. 1st Austrian-German workshop on Computational Materials Design, Kramsach, Austria (2011)
Neugebauer, J.: Ab initio based multiscale modeling of advanced electronic, structural and biological materials. Colloquium at Montan-Universiät Leoben, Leoben, Austria (2010)
Neugebauer, J.: Ab-initio Determination of Magnetic Free Energies at Finite Temperatures For Realistic Materials. ICAUMS Conference, Jeju Island, South Korea (2010)
Fabritius, H.; Nikolov, S.; Hild, S.; Ziegler, A.; Friák, M.; Neugebauer, J.; Raabe, D.: Design Principles of Load-bearing Cuticle from different Crustacean Species evaluated experimentally and by Ab initio-based Multiscale Simulations. MRS Fall Meeting 2010, Boston, MA, USA (2010)
Neugebauer, J.: Ab-initio Based Modeling of Novel High-strength Steels: From a predictive Thermodynamic Description to Tailored Mechanical Properties. MRS Fall Meeting, Boston, MA, USA (2010)
Neugebauer, J.: Ab-initio Determination of Free Energies at Finite Temperatures for High-Throughput Modeling. International Workshop Materials Discovery by Scale-Bridging High-Throughput Experimentation and Modeling, Ruhr-Universität Bochum, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…
This project with the acronym GB-CORRELATE is supported by an Advanced Grant for Gerhard Dehm by the European Research Council (ERC) and started in August 2018. The project GB-CORRELATE explores the presence and consequences of grain boundary phase transitions (often termed “complexions” in literature) in pure and alloyed Cu and Al. If grain size…
The project HyWay aims to promote the design of advanced materials that maintain outstanding mechanical properties while mitigating the impact of hydrogen by developing flexible, efficient tools for multiscale material modelling and characterization. These efficient material assessment suites integrate data-driven approaches, advanced…
The segregation of impurity elements to grain boundaries largely affects interfacial properties and is a key parameter in understanding grain boundary (GB) embrittlement. Furthermore, segregation mechanisms strongly depend on the underlying atomic structure of GBs and the type of alloying element. Here, we utilize aberration-corrected scanning…