Raabe, D.; Sachs, C.; Romano, P.: The crustacean exoskeleton as an example of a structurally and mechanically graded biological nanocomposite material. Acta Materialia 53, pp. 4281 - 4292 (2005)
Raabe, D.; Wang, Y.; Roters, F.: Crystal plasticity simulation study on the influence of texture on earing in steel. Computational Materials Science 34, pp. 221 - 234 (2005)
Storojeva, L.; Ponge, D.; Raabe, D.; Kaspar, R.: On the influence of heavy warm reduction on the microstructure and mechanical properties of a medium-carbon ferritic steel. Zeitschrift für Metallkunde 95/12, pp. 1108 - 1114 (2004)
Storojeva, L.; Ponge, D.; Kaspar, R.; Raabe, D.: Development of Microstructure and Texture of Medium Carbon Steel during Heavy Warm Deformation. Acta Materialia 52/8, pp. 2209 - 2220 (2004)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Materials Science and Engineering A 387–389, pp. 950 - 954 (2004)
Ma, A.; Roters, F.; Raabe, D.: Numerical study of textures and Lankford values for FCC polycrystals by use of a modified Taylor model. Computational Materials Science 29, 3, pp. 259 - 395 (2004)
Raabe, D.: Overview on the Lattice Boltzmann Method for Nano- and Microscale Fluid Dynamics in Materials Science and Engineering. Modelling and Simulation in Materials Science and Engineering 12, pp. R13 - R46 (2004)
Raabe, D.; Ge, J.: Experimental study on the thermal stability of Cr filaments in a Cu–Cr–Ag in situ composite. Scripta Materialia 51, pp. 915 - 920 (2004)
Raabe, D.; Roters, F.: Using texture components in crystal plasticity finite element simulations. International Journal of Plasticity 20, pp. 339 - 361 (2004)
Sandim, H. R. Z.; Sandim, M. J. R.; Bernardi, H. H.; Lins, J. F. C.; Raabe, D.: Annealing effects on the microstructure and texture of a multifilamentary Cu–Nb composite wire. Scripta Materialia 51, pp. 1099 - 1104 (2004)
Lima, E. B. F.; Pyzalla, A. R.; Reimers, W.; Kuo, J.-C.; Raabe, D.: Mosaic Size Distributions in an Aluminum Bi-crystal Deformed by Channel Die Plane Strain Compression. Journal of Neutron Research 11 (4), pp. 209 - 214 (2003)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project is a joint project of the De Magnete group and the Atom Probe Tomography group, and was initiated by MPIE’s participation in the CRC TR 270 HOMMAGE. We also benefit from additional collaborations with the “Machine-learning based data extraction from APT” project and the Defect Chemistry and Spectroscopy group.
In this project, we aim to design novel NiCoCr-based medium entropy alloys (MEAs) and further enhance their mechanical properties by tuning the multiscale heterogeneous composite structures. This is being achieved by alloying of varying elements in the NiCoCr matrix and appropriate thermal-mechanical processing.
“Smaller is stronger” is well known in micromechanics, but the properties far from the quasi-static regime and the nominal temperatures remain unexplored. This research will bridge this gap on how materials behave under the extreme conditions of strain rate and temperature, to enhance fundamental understanding of their deformation mechanisms. The…