An, D.; Griffiths, T. A.; Konijnenberg, P. J.; Mandal, S.; Wang, Z.; Zaefferer, S.: Correlating the five parameter grain boundary character distribution and the intergranular corrosion behaviour of a stainless steel using 3D orientation microscopy based on mechanical polishing serial sectioning. Acta Materialia 156, pp. 297 - 309 (2018)
Wang, Z.; Zaefferer, S.: On the accuracy of grain boundary character determination by pseudo-3D EBSD. Materials Characterization 130, pp. 33 - 38 (2017)
Zaefferer, S.; An, D.; Wang, Z.: Experimental investigations on the relationship between crystallographic character of grain boundaries and their functional and mechanical properties in various engineering materials. DPG Frühjahrtagung, Dresden, Germany (2017)
Wang, Z.: Investigation of crystallographic character and molten-salt-corrosion properties of grain boundaries in a stainless steel using EBSD and ab-initio calculations. Dissertation, Ruhr-Universität Bochum, Bochum, Germany (2017)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Hydrogen embrittlement is one of the most substantial issues as we strive for a greener future by transitioning to a hydrogen-based economy. The mechanisms behind material degradation caused by hydrogen embrittlement are poorly understood owing to the elusive nature of hydrogen. Therefore, in the project "In situ Hydrogen Platform for…
Defects at interfaces strongly impact the properties and performance of functional materials. In functional nanostructures, they become particularly important due to the large surface to volume ratio.
This ERC-funded project aims at developing an experimentally validated multiscale modelling framework for the prediction of fracture toughness of metals.
In this project, links are being established between local chemical variation and the mechanical response of laser-processed metallic alloys and advanced materials.