Chen, T.; Lu, W.; Li, J.; Chen, S.; Li, C.; Weng, G. J.: Tailoring tensile ductility of thin film by grain size graded substrates. International Journal of Solids and Structures 166, pp. 124 - 134 (2019)
Liu, C.; Lu, W.; Weng, G. J.; Li, J.: A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing 756, pp. 284 - 290 (2019)
Wang, Z.; Lu, W.; Raabe, D.; Li, Z.: On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions. Journal of Alloys and Compounds 781, pp. 734 - 743 (2019)
If manganese nodules can be mined in an environmentally friendly way, the critical metals needed for the energy transition could be produced with low CO2 emissions
Scientists at the Max Planck Institute for Sustainable Materials have developed a carbon-free, energy-saving method to extract nickel for batteries, magnets and stainless steel.
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.