Varnik, F.: Can microscale wall roughness trigger unsteady/chaotic flows ? 5th International Workshop on Complex Systems, American Institute of Physics, Sendai, Japan (2007)
Varnik, F.: Two-dimensional lattice Boltzmann studies of the effects of wall roughness/channel design on the flow at moderate Reynolds numbers. IUTAM Symposium on Advances in Micro-& Nanofluidics, Dresden, Germany (2007)
Varnik, F.: Lattice Boltzmann studies of binary liquids and liquid-vapor systems beyond equilibrium. Leibniz Institute for Polymer Research, Dresden, Germany (2007)
Varnik, F.: A comprehensive introduction to lattice Boltzmann methods in materials science and engineering. Fritz-Haber Institut der Max-Planck Gesellschaft, Berlin, Germany (2007)
Varnik, F.: Non linear rheology and dynamic yielding in a simple glass: A molecular dynamics study. School of Physics, University of Edinburgh, UK (2006)
Varnik, F.: Chaotic lubricant flows in metal forming: Some new insights from lattice Boltzmann simulations. Seminar Talk at MPI für Eisenforschung GmbH, Düsseldorf, Germany (2006)
Varnik, F.: Lattice Boltzmann simulations of moderate Reynolds number flows in strongly confined channels: The role of the wall roughness. Massachussets Institute of Technology (MIT), Boston, MA, USA (2006)
Varnik, F.: MD simulations of steady state yielding in a simple glass. 31st Middle Euoropean Cooperation on Statistical Physics (MECO31), Primošten, Croatia (2006)
Varnik, F.: Rheological response of a model glass: Theory versus computer simulation. 2nd International workshop on dynamics in viscous liquids, Mainz, Germany (2006)
Varnik, F.; Raabe, D.: Lattice Boltzmann studies of flow instability in microchannels: The role of the surface roughness/topology. Laboratoire de Physique et de la Matiere Condensee et Nanostructure, Universite Claude Bernard, Lyon1, France (2005)
Varnik, F.: Complex rheology of simple systems: Shear thinning, dynamic versus static yielding and flow heterogeneity. CECAM-Workshop on Simulating deformed glasses and melts: From simple liquids to polymers, Lyon, France (2005)
Varnik, F.: Rheology of dense amorphous systems: Recent theories versus molecular dynamics simulations. 5th International Discussion Meeting on Relaxation in Complex Systems, Lille, France (2005)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
In this ongoing project, we investigate spinodal fluctuations at crystal defects such as grain boundaries and dislocations in Fe-Mn alloys using atom probe tomography, electron microscopy and thermodynamic modeling [1,2].
The aim of the Additive micromanufacturing (AMMicro) project is to fabricate advanced multimaterial/multiphase MEMS devices with superior impact-resistance and self-damage sensing mechanisms.
TiAl-based alloys currently mature into application. Sufficient strength at high temperatures and ductility at ambient temperatures are crucial issues for these novel light-weight materials. By generation of two-phase lamellar TiAl + Ti3Al microstructures, these issues can be successfully solved. Because oxidation resistance at high temperatures is…
We will investigate the electrothermomechanical response of individual metallic nanowires as a function of microstructural interfaces from the growth processes. This will be accomplished using in situ SEM 4-point probe-based electrical resistivity measurements and 2-point probe-based impedance measurements, as a function of mechanical strain and…