Genchev, G.; Erbe, A.: Raman Spectroscopy of Mackinawite FeS in Anodic Iron Sulfide Corrosion Products. Journal of the Electrochemical Society 163 (6), pp. C333 - C338 (2016)
Nayak, S.; Erbe, A.: Mechanism of the potential-triggered surface transformation of germanium in acidic medium studied by ATR-IR spectroscopy. Physical Chemistry Chemical Physics 18, pp. 25100 - 25109 (2016)
Xie, K.; Yang, F.; Ebbinghaus, P.; Erbe, A.; Muhler, M.; Xia, W.: A reevaluation of the correlation between the synthesis parameters and structure and properties of nitrogen-doped carbon nanotubes. Journal of Energy Chemistry 24 (4), pp. 407 - 415 (2015)
Beese-Vasbender, P. F.; Nayak, S.; Erbe, A.; Stratmann, M.; Mayrhofer, K. J. J.: Electrochemical characterization of direct electron uptake in electrical microbially influenced corrosion of iron by the lithoautotrophic SRB Desulfopila corrodens strain IS4. Electrochimica Acta 167, pp. 321 - 329 (2015)
Krzywiecki, M.; Grządziel, L.; Sarfraz, A.; Iqbal, D.; Szwajca, A.; Erbe, A.: Zinc oxide as a defect-dominated material in thin films for photovoltaic applications - experimental determination of defect levels, quantification of composition, and construction of band diagram. Physical Chemistry Chemical Physics 17 (15), pp. 10004 - 10013 (2015)
Paunoiu, A.; Moirangthem, R. S.; Erbe, A.: Whispering gallery modes in intrinsic TiO2 microspheres coupling to the defect-related photoluminescence after visible excitation. Physica Status Solidi (RRL) - Rapid Research Letters 9, pp. 241 - 244 (2015)
Iqbal, D.; Sarfraz, A.; Stratmann, M.; Erbe, A.: Solvent-starved conditions in confinement cause chemical oscillations excited by passage of a cathodic delamination front. Chemical Communications 51 (89), pp. 16041 - 16044 (2015)
Krzywiecki, M.; Sarfraz, A.; Erbe, A.: Towards monomaterial p-n junctions: single-step fabrication of tin oxide films and their non-destructive characterisation by angle-dependent X-ray photoelectron spectroscopy. Applied Physics Letters 107 (23), 231601 (2015)
Toparli, C.; Sarfraz, A.; Erbe, A.: A new look at oxide formation at the copper/electrolyte interface by in situ spectroscopies. Physical Chemistry Chemical Physics 17, pp. 31670 - 31679 (2015)
Groche, P.; Wohletz, S.; Erbe, A.; Altin, A.: Effect of the primary heat treatment on the bond formation in cold welding of aluminum and steel by cold forging. Journal of Materials Processing Technology 214 (10), pp. 2040 - 2048 (2014)
Kemnade, N.; Chen, Y.; Muglali, M. I.; Erbe, A.: Electrochemical reductive desorption of alkyl self-assembled monolayers studied in situ by spectroscopic ellipsometry: Evidence for formation of a low refractive index region after desorption. Physical Chemistry Chemical Physics 16 (32), pp. 17081 - 17090 (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The key to the design and construction of advanced materials with tailored mechanical properties is nano- and micro-scale plasticity. Significant influence also exists in shaping the mechanical behavior of materials on small length scales.
This project aims to correlate the localised electrical properties of ceramic materials and the defects present within their microstructure. A systematic approach has been developed to create crack-free deformation in oxides through nanoindentation, while the localised defects are probed in-situ SEM to study the electronic properties. A coupling…
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.