Zaefferer, S.: Some topics of experimental texture and microstructure research at the MPIE. Intern. Workshop on Modern Texture Research in Engineering Materials (MoteX), Düsseldorf (2003)
Zaefferer, S.: Microstructural characterization of low alloyed TRIP steels by SEM and TEM techniques. Seminar des Instituts für Eisenhüttenkunde der RWTH Aachen, RWTH Aachen, Germany (2003)
Zaefferer, S.: Microtexture measurements: A powerful tool to understand microstructures. Fachvortrag bei der Sitzung des Fachbeirates des Instituts, Düsseldorf, Düsseldorf (2003)
Kobayashi, S.; Zaefferer, S.; Schneider, A.; Raabe, D.; Frommeyer, G.: Slip system determination by rolling texture measurements around the strength peak temperature in a Fe3Al-based alloy. Intern. Conf. on Strength of Materials (ICSMA 13), Budapest, Hungary (2003)
Archie, F. M. F.; Zaefferer, S.: Micro-damage initiation in advanced high strength steels (AHSS): Influence of Prior Austenite Grain Boundaries. Meeting Materials 2016 - M2i - Materials innovation institute, Nieuwegein, The Netherlands (2016)
Stechmann, G.; Zaefferer, S.; Konijnenberg, P. J.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Port Elizabeth, South Africa (2016)
Stechmann, G.; Zaefferer, S.: Microstructural and Electronic Characterization of CdTe Thin Film Solar Cells: A Correlative SEM-Based Approach. IAMNano, Hamburg, Germany (2015)
Zaefferer, S.; Zhu, Z.; Reed, R. C.: Observation of Dislocation Evolution during Straining of a γ-γ’ Superalloy Single Crystal using the CECCI technique. Eurosuperalloys 2014, Giens, France (2014)
Archie, F. M. F.; Zaefferer, S.; Raabe, D.: The influence of grain boundary character on dislocation densities and fracture toughness in AHSS. M2i Conference "High Tech Materials: your world - our business", Sint Michielgestel, The Netherlands (2014)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project aims to develop a testing methodology for the nano-scale samples inside an SEM using a high-speed nanomechanical low-load sensor (nano-Newton load resolution) and high-speed dark-field differential phase contrast imaging-based scanning transmission electron microscopy (STEM) sensor.
The thorough, mechanism-based, quantitative understanding of dislocation-grain boundary interactions is a central aim of the Nano- and Micromechanics group of the MPIE [1-8]. For this purpose, we isolate a single defined grain boundary in micron-sized sample. Subsequently, we measure and compare the uniaxial compression properties with respect to…
The goal of this project is the investigation of interplay between the atomic-scale chemistry and the strain rate in affecting the deformation response of Zr-based BMGs. Of special interest are the shear transformation zone nucleation in the elastic regime and the shear band propagation in the plastic regime of BMGs.
In this project we developed a phase-field model capable of describing multi-component and multi-sublattice ordered phases, by directly incorporating the compound energy CALPHAD formalism based on chemical potentials. We investigated the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during commercial…