Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting of epitaxial Al thin films on sapphire studied by electron microscopy. Materials Research Society Fall Meeting & Exhibition 2016 (MRS Fall 2016), Boston, MA, USA (2016)
Scheu, C.: New insights into HTPEM fuel cells using electron microscopy techniques. THERMEC’2016: 9th International Conference on Processing & Manufacturing of Advanced Materials, Graz, Austria (2016)
Scheu, C.: Atomic arrangement and defects in Nb3O7(OH) and TiO2 nanoarrays and their effect on functional properties. Talk at Institut für Anorganische und Analytische Chemie, Universität Freiburg, Freiburg, Germany (2016)
Scheu, C.: Dewetting of epitaxial Al thin films on (0001) single crystalline sapphire substrates. Materials Science & Technology (MS&T), Columbus, OH, USA (2015)
Scheu, C.: Challenges in nanostructured photovoltaic devices. IAMNano 2015 - International Workshop on Advanced and In‐situ Microscopies of Functional Nanomaterials and Devices, Hamburg, Germany (2015)
Hengge, K.; Heinzl, C.; Perchthaler, M.; Scheu, C.: Electron microscopic insights into degradation processes in high temperature polymer electrolyte membrane fuel cells. Scandem 2015, Jyväskylä, Finland (2015)
Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. Understanding Grain Boundary Migration: Theory Meets Experiment, Günzburg/Donau, Germany (2015)
Scheu, C.: Structural and Functional Properties of Nb3O7(OH) and TiO2 Nanoarrays. Max Planck POSTECH/KOREA Symposium on Frontiers in Materials Science, Pohang, Korea (2015)
Folger, A.; Scheu, C.: Detailed electron microscopy study on the structural transformation inside rutile TiO2 nanowires upon annealing. 2nd International Workshop on TEM Spectroscopy in Material Science, Uppsala, Sweden (2015)
Scheu, C.: Dewetting of Al films on alumina. 3 Phase, Interface, Component Systems (PICS), Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Marseille, France (2015)
Frank, A.; Folger, A.; Betzler, S. B.; Wochnik, A. S.; Wisnet, A.; Scheu, C.: Low-cost synthesis of semiconducting nanostructures used in energy applications. 61. Metallkunde-Kolloquium - Werkstoffforschung für Wirtschaft und Gesellschaft, Lech am Arlberg, Austria (2015)
Scheu, C.: Optimization and Characterization of Nanostructured Materials used in Energy Generating Devices. Talk at Institut für Metallkunde und Metallphysik RWTH Aachen University, Aachen, Germany (2015)
Scheu, C.: Interface challenges in nanostructured energy generating devices. Energy Materials Nanotechnology (EMN) Photovoltaics Meeting, Orlando, FL, USA (2015)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Statistical significance in materials science is a challenge that has been trying to overcome by miniaturization as in micropillar compression. However, this process is still limited to 4-5 tests per parameter variance, i.e. Size, orientation, grain size, composition, etc. as the process of fabricating pillars and testing has to be done one by one.…
Because of their excellent corrosion resistance, high wear resistance and comparable low density, Fe–Al-based alloys are an interesting alternative for replacing stainless steels and possibly even Ni-base superalloys. Recent progress in increasing strength at high temperatures has evoked interest by industries to evaluate possibilities to employ…
This project (B06) is part of the SFB 1394 collaborative research centre (CRC), focused on structural and atomic complexity, defect phases and how they are related to material properties. The project started in January 2020 and has three important work packages: (i) fracture analysis of intermetallic phases, (ii) the relationship of fracture to…
Grain boundaries (GBs) affect many macroscopic properties of materials. In the case of metals grain growth, Hall–Petch hardening, diffusion, and electrical conductivity, for example, are influenced or caused by GBs. The goal of this project is to investigate the different GB phases (also called complexions) that can occur in tilt boundaries of fcc…