Benedikt, U.; Schneider, W.; Auer, A. A.: Oxygen Reduktion Reaction On Pt-Nanoparticles: A Density-Functional Based Study II. Electrochemistry 2010: From Microscopic Understanding to Global Impact, Ruhr-Universität Bochum, Bochum, Germany (2010)
Schneider, W.; Auer, A. A.; Mehring, M.: Interactions of Main Group Elements and Aromatic Systems - A Theoretical Study. STC 2010 - Quantum Chemistry for Large and Complex Systems: From Theory to Algorithms and Applications, Münster, Germany (2010)
Schneider, W.; Benedikt, U.; Auer, A. A.: Oxygen Reduktion Reaction on Pt-Nanoparticles: A Density-Functional Based Study I. Electrochemistry 2010: From Microscopic Understanding to Global Impact, Ruhr-Universität Bochum, Bochum, Germany (2010)
Auer, A. A.: Grundlagen von Elektronenstrukturrechnungen. Lecture: Kompaktkurs "Grundlagen von Elektronenstrukturrechnungen", Institut für Chemie, TU Chemnitz, Germany, April 12, 2010 - July 23, 2010
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project endeavours to offer comprehensive insights into GB phases and their mechanical responses within both pure Ni and Ni-X (X=Cu, Au, Nb) solid solutions. The outcomes of this research will contribute to the development of mechanism-property diagrams, guiding material design and optimization strategies for various applications.
By using the DAMASK simulation package we developed a new approach to predict the evolution of anisotropic yield functions by coupling large scale forming simulations directly with crystal plasticity-spectral based virtual experiments, realizing a multi-scale model for metal forming.
The aim of this project is to correlate the point defect structure of Fe1-xO to its mechanical, electrical and catalytic properties. Systematic stoichiometric variation of magnetron-sputtered Fe1-xO thin films are investigated regarding structural analysis by transition electron microscopy (TEM) and spectroscopy methods, which can reveal the defect…
Hydrogen embrittlement (HE) is one of the most dangerous embrittlement problems in metallic materials and advanced high-strength steels (AHSS) are particularly prone to HE with the presence of only a few parts-per-million of H. However, the HE mechanisms in these materials remain elusive, especially for the lightweight steels where the composition…