Abu-Farsakh, H.; Neugebauer, J.: Enhancing nitrogen solubility in GaAs and InAs by surface kinetics: An ab initio study. Physical Review B 79, 155311, pp. 155311 - 155323 (2009)
Abu-Farsakh, H.; Neugebauer, J.: Exploring the unusual diffusion of N adatoms on GaAs(001) using first principles calculations. DPG Frühjahrstagung 2010, Regensburg, Germany (2010)
Abu-Farsakh, H.; Neugebauer, J.: Exploring the unusual diffusion of N adatoms at GaAs(001) surface. Computational Materials Science on Complex Energy Landscapes Workshop, Imst, Austria (2010)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing N solubility in diluted nitrides by surface kinetics: An ab-initio study. Spring meeting of the German Physical Society (DPG), Berlin, Germany (2008)
Abu-Farsakh, H.; Neugebauer, J.: Ab-initio study of the thermodynamics and kinetics of N at GaAs(001) surface. PAW workshop 2007, Goslar, Germany (2007)
Abu-Farsakh, H.; Neugebauer, J.: In-N anti-correlation in InGaAsN alloys: The delicate interplay between adatom thermodynamics and kinetics. Spring meeting of the German Physical Society (DPG), Regensburg, Germany (2007)
Abu-Farsakh, H.; Neugebauer, J.: Tailoring the N-solubility in InGaAs-alloys by surface engineering: Applications and limits. 1. Harzer Ab initio Workshop, Clausthal, Germany (2006)
Abu-Farsakh, H.; Neugebauer, J.: Incorporation of N at GaAs and InAs surfaces: An ab-initio study. Technische Universität Berlin, Berlin, Germany (2006)
Abu-Farsakh, H.; Dick, A.; Neugebauer, J.: Incorporation of N at GaAs and InAs surfaces. Deutsche Physikalische Gesellschaft Spring Meeting of the Division Condensed Matter, Dresden, Germany (2006)
Abu-Farsakh, H.; Neugebauer, J.: Combined ab-initio and Monte Carlo calculations to explore the surface thermodynamics and kinetics of dilute nitrides. 8th International Conference on Nitride Semiconductors (ICNS-8), Jeju Island, South Korea (2009)
Abu-Farsakh, H.; Neugebauer, J.: The role of surface kinetics in achieving high non-equilibrium N concentrations in bulk GaAs. DPG Spring Meeting 2009, Dresden, Germany (2009)
Abu-Farsakh, H.; Neugebauer, J.; Albrecht, M.: Ab-initio study of compositional anti-correlation of In and N in InGaAsN alloys. The 7th International Conference of Nitride Semiconductors (ICNS-7), Las Vegas, NV, USA (2007)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing the solubility of N in GaAs and InAs by surface kinetics. 28th International Conference on the Physics of Semiconductors, Vienna, Austria (2006)
Abu-Farsakh, H.; Neugebauer, J.: Enhancing bulk solubility by surface engineering: An ab-initio study. Workshop: Ab initio Description of Iron and Steel, Status and future challenges, Ringberg Castle, Germany (2006)
Abu-Farsakh, H.: Understanding the interplay between thermodynamics and surface kinetics in the growth of dilute nitride alloys from first principles. Dissertation, University of Paderborn, Paderborn, Germany (2010)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…