Dehm, G.: Probing the mechanics of dislocation - grain boundary interactions: Lessons learned from in situ microcompression experiments. 14th International Conference on Local Mechanical Properties 2019 (plenary), Prague, Czech Republic (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. KSM Annual Fall Conference 2019, Gyeongju, South Korea (2019)
Stein, F.; Luo, W.; Kirchlechner, C.; Dehm, G.: Micromechanics of Laves Phases: Strength, Fracture Toughness, and Hardness as Function of Composition and Crystal Structure. Joint EPRI-123 HiMAT Conference on Advances in High Temperature Materials, Nagasaki, Japan (2019)
Dehm, G.: Do we understand the microstructure and properties of materials: New insights by advanced microscopy techniques. Metallurgical Engineering and Materials Science Department, Indian Institute of Technology, Mumbai, India (2019)
Dehm, G.: Resolving grain boundary phase transformations by advanced STEM for fcc metals and multinary alloys. 6th International Symposium on Metastable, Amorphous and Nanostructured Materials (ISMANAM-2019), Chennai, India (2019)
Dehm, G.: Micro- and Nanomechanical Testing of Materials - From Materials Physics to Materials Design. Convegno Nazionale INSTM XII, Ischia Porto, Italy (2019)
Liebscher, C.; Meiners, T.; Peter, N. J.; Frolov, T.; Dehm, G.: Experimental discovery of grain boundary phase transformations unveiled by atomistic simulations. PICS3 2019 Meeting, Centre Interdisciplinaire de Nanoscience de Marseille, Marseille, France (2019)
Dehm, G.: Do we understand the interplay of microstructure and properties of materials: New insights by advanced microscopy techniques. MPI CPFS, Dresden, Germany (2019)
Arigela, V. G.; Oellers, T.; Ludwig, A.; Kirchlechner, C.; Dehm, G.: High temperature mechanical characterization of binary Cu–X alloys produced by Combinatorial Synthesis. International conference on metallurgical coatings and thin films (ICMCTF) 2019, San Diego, CA, USA (2019)
Jeong, J.; Dehm, G.; Liebscher, C.: Advances in automatic TEM based orientation mapping with precession electron diffraction. Joint Max-Planck-Institut für Eisenforschung MPIE) / Ernst Ruska-Centre (ER-C) Workshop, Düsseldorf, Germany (2019)
Kini, M. K.; Kirchlechner, C.; Dehm, G.: Slip transmission across multiple coherent twin boundaries in nanotwinned Ag. Seminar on "Slip Transmission in nanotwinned Ag", Indian Institute of Science, Department of Materials Engineering, Bangalore, India (2019)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
This project studies the influence of grain boundary chemistry on mechanical behaviour using state-of-the-art micromechanical testing systems. For this purpose, we use Cu-Ag as a model system and compare the mechanical response/deformation behaviour of pure Cu bicrystals to that of Ag segregated Cu bicrystals.
The aim of this project is to develop novel nanostructured Fe-Co-Ti-X (X = Si, Ge, Sn) compositionally complex alloys (CCAs) with adjustable magnetic properties by tailoring microstructure and phase constituents through compositional and process tuning. The key aspect of this work is to build a fundamental understanding of the correlation between…
In this project, we aim to enhance the mechanical properties of an equiatomic CoCrNi medium-entropy alloy (MEA) by interstitial alloying. Carbon and nitrogen with varying contents have been added into the face-centred cubic structured CoCrNi MEA.
Hydrogen is a clean energy source as its combustion yields only water and heat. However, as hydrogen prefers to accumulate in the concentrated stress region of metallic materials, a few ppm Hydrogen can already cause the unexpected sudden brittle failure, the so-called “hydrogen embrittlement”. The difficulties in directly tracking hydrogen limits…