Jang, K.; Kim, M.-Y.; Jung, C.; Kim, S.-H.; Choi, D.; Park, S.-C.; Scheu, C.; Choi, P.-P.: Direct Observation of Trace Elements in Barium Titanate of Multilayer Ceramic Capacitors Using Atom Probe Tomography. Microscopy and Microanalysis 30 (6), pp. 1047 - 1056 (2024)
Yoo, B.; Jung, C.; Jang, K.; Jun, H.; Choi, P.-P.: Novel Ni-Co-based superalloys with high thermal stability and specific yield stress discovered by directed energy deposition. Materials and Design 238, 112607 (2024)
Park, H.; Jung, C.; Yi, S.; Choi, P.-P.: Elucidating the ball-milling-induced crystallization mechanism of amorphous NbCo1.1Sn via atomic-scale compositional analysis. Journal of Alloys and Compounds 968, 172014 (2023)
Jung, C.; Jeon, S.-j.; Lee, S.; Park, H.; Han, S.; Oh, J.; Yi, S.-H.; Choi, P.-P.: Reduced lattice thermal conductivity through tailoring of the crystallization behavior of NbCoSn by V addition. Journal of Alloys and Compounds 962, 171191 (2023)
Jung, C.; Zhang, S.; Cheng, N.; Scheu, C.; Yi, S.-H.; Choi, P.-P.: Effect of Heat Treatment Temperature on the Crystallization Behavior and Microstructural Evolution of Amorphous NbCo1.1Sn. ACS Applied Materials and Interfaces 15 (39), pp. 46064 - 46073 (2023)
Kim, H.; Bobel, A.; Jung, C.; Olson, G. B.; Euh, K.: Strengthening model development and effects of low diffusing solutes to coarsening resistance in aluminum alloys. Materials Today Communications 36, 106636 (2023)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
The aim of the work is to develop instrumentation, methodology and protocols to extract the dynamic strength and hardness of micro-/nano- scale materials at high strain rates using an in situ nanomechanical tester capable of indentation up to constant strain rates of up to 100000 s−1.
In this project, we investigate a high angle grain boundary in elemental copper on the atomic scale which shows an alternating pattern of two different grain boundary phases. This work provides unprecedented views into the intrinsic mechanisms of GB phase transitions in simple elemental metals and opens entirely novel possibilities to kinetically engineer interfacial properties.
Within this project, we will use an infra-red laser beam source based selective powder melting to fabricate copper alloy (CuCrZr) architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional CuCrZr alloy lattice architectures, under both quasi-static and dynamic loading…
Copper is widely used in micro- and nanoelectronics devices as interconnects and conductive layers due to good electric and mechanical properties. But especially the mechanical properties degrade significantly at elevated temperatures during operating conditions due to segregation of contamination elements to the grain boundaries where they cause…