Neugebauer, J.: Application and Implementation of Electronic Structure Methods. Lecture: Ruhr-Universität Bochum, SS 2015, Bochum, Germany, April 01, 2015 - September 30, 2015
Neugebauer, J.: Application and Implementation of Electronic Structure Methods. Lecture: Ruhr-Universität Bochum, SS 2014, Bochum, Germany, April 01, 2014 - September 30, 2014
Neugebauer, J.: Application and Implementation of Electronic Structure Methods. Lecture: Ruhr-Universität Bochum, SS 2013 , Bochum, Germany, April 01, 2013 - September 30, 2013
Neugebauer, J.; Hickel, T.: Moderne Computersimulations-Methoden in der Festkörperphysik. Lecture: Hands-on-Tutorial, Ruhr-Universität Bochum, Bochum, Germany, September 20, 2010 - September 24, 2010
Neugebauer, J.; Hickel, T.: Computerpraktikum: Moderne Computersimulationsmethoden in der Festkörperphysik. Lecture: Blockpraktikum, MPIE, Düsseldorf, Germany, September 20, 2010 - September 24, 2010
Deißenbeck, F.: Development of an ab initio electrochemical cell: Understanding the dielectric properties of interfacial water and Mg dissolution from first principles. Dissertation, Philipps-Universität Marburg, Germany (2024)
Lochner, F.: Interplay of Real Space and Electronic Structure for Iron-Based Superconductors: An ab initio Study. Dissertation, Ruhr-Universität Bochum, Germany (2021)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
Within this project, we will use a green laser beam source based selective melting to fabricate full dense copper architectures. The focus will be on identifying the process parameter-microstructure-mechanical property relationships in 3-dimensional copper lattice architectures, under both quasi-static and dynamic loading conditions.
Oxides find broad applications as catalysts or in electronic components, however are generally brittle materials where dislocations are difficult to activate in the covalent rigid lattice. Here, the link between plasticity and fracture is critical for wide-scale application of functional oxide materials.
The fracture toughness of AuXSnY intermetallic compounds is measured as it is crucial for the reliability of electronic chips in industrial applications.
Within this project we investigate chemical fluctuations at the nanometre scale in polycrystalline Cu(In,Ga)Se2 and CuInS2 thin-flims used as absorber material in solar cells.