Hieke, S. W.; Dehm, G.; Scheu, C.: Temperature induced faceted hole formation in epitaxial Al thin films on sapphire. 8th International Conference on High Temperature Capillarity (HTC-2015), Bad Herrenalb, Germany (2015)
Folger, A.; Wisnet, A.; Scheu, C.: Transmission electron microscopic characterization of TiO2/NbxOy core-shell nanowires. Autumn School on Microstructural Characterization and Modelling of Thin-Film Solar Cells, Werder, Germany (2014)
Frank, A.; Wochnik, A. S.; Betzler, S. B.; Scheu, C.: Copper indium disulfide films synthesized with L-cysteine. Autumn School on Microstructural Characterization and Modelling of Thin-Film Solar Cells, Werder, Potsdam, Germany (2014)
Hieke, S. W.; Dehm, G.; Scheu, C.: Solid state dewetting phenomena of epitaxial Al thin films on sapphire (α-Al2O3). 2nd International Multidisplinary Microscopy Congress (InterM 2014), Oludeniz, Fethiye, Turkey (2014)
Gleich, S.; Heinzl, C.; Ossiander, T.; Perchthaler, M.; Scheu, C.: Investigation of high-temperature polymer electrolyte membrane fuel cells by electron microscopy methods. CENS Workshop “Nanosciences: Great Adventures on Small Scales”, Venice, Italy (2013)
International researcher team presents a novel microstructure design strategy for lean medium-manganese steels with optimized properties in the journal Science
About 90% of all mechanical service failures are caused by fatigue. Avoiding fatigue failure requires addressing the wide knowledge gap regarding the micromechanical processes governing damage under cyclic loading, which may be fundamentally different from that under static loading. This is particularly true for deformation-induced martensitic…
With the support of DFG, in this project the interaction of H with mechanical, chemical and electrochemical properties in ferritic Fe-based alloys is investigated by the means of in-situ nanoindentation, which can characterize the mechanical behavior of independent features within a material upon the simultaneous charge of H.
The full potential of energy materials can only be exploited if the interplay between mechanics and chemistry at the interfaces is well known. This leads to more sustainable and efficient energy solutions.
This project is part of Correlative atomic structural and compositional investigations on Co and CoNi-based superalloys as a part of SFB/Transregio 103 project “Superalloy Single Crystals”. This project deals with the identifying the local atomic diffusional mechanisms occurring during creep of new Co and Co/Ni based superalloys by correlative…