Varnik, F.: Can microscale wall roughness trigger unsteady/chaotic flows ? 5th International Workshop on Complex Systems, American Institute of Physics, Sendai, Japan (2007)
Varnik, F.: Two-dimensional lattice Boltzmann studies of the effects of wall roughness/channel design on the flow at moderate Reynolds numbers. IUTAM Symposium on Advances in Micro-& Nanofluidics, Dresden, Germany (2007)
Varnik, F.: Lattice Boltzmann studies of binary liquids and liquid-vapor systems beyond equilibrium. Leibniz Institute for Polymer Research, Dresden, Germany (2007)
Varnik, F.: A comprehensive introduction to lattice Boltzmann methods in materials science and engineering. Fritz-Haber Institut der Max-Planck Gesellschaft, Berlin, Germany (2007)
Varnik, F.: Non linear rheology and dynamic yielding in a simple glass: A molecular dynamics study. School of Physics, University of Edinburgh, UK (2006)
Varnik, F.: Chaotic lubricant flows in metal forming: Some new insights from lattice Boltzmann simulations. Seminar Talk at MPI für Eisenforschung GmbH, Düsseldorf, Germany (2006)
Varnik, F.: Lattice Boltzmann simulations of moderate Reynolds number flows in strongly confined channels: The role of the wall roughness. Massachussets Institute of Technology (MIT), Boston, MA, USA (2006)
Varnik, F.: MD simulations of steady state yielding in a simple glass. 31st Middle Euoropean Cooperation on Statistical Physics (MECO31), Primošten, Croatia (2006)
Varnik, F.: Rheological response of a model glass: Theory versus computer simulation. 2nd International workshop on dynamics in viscous liquids, Mainz, Germany (2006)
Varnik, F.; Raabe, D.: Lattice Boltzmann studies of flow instability in microchannels: The role of the surface roughness/topology. Laboratoire de Physique et de la Matiere Condensee et Nanostructure, Universite Claude Bernard, Lyon1, France (2005)
Varnik, F.: Complex rheology of simple systems: Shear thinning, dynamic versus static yielding and flow heterogeneity. CECAM-Workshop on Simulating deformed glasses and melts: From simple liquids to polymers, Lyon, France (2005)
Varnik, F.: Rheology of dense amorphous systems: Recent theories versus molecular dynamics simulations. 5th International Discussion Meeting on Relaxation in Complex Systems, Lille, France (2005)
Max Planck scientists design a process that merges metal extraction, alloying and processing into one single, eco-friendly step. Their results are now published in the journal Nature.
Scientists of the Max-Planck-Institut für Eisenforschung pioneer new machine learning model for corrosion-resistant alloy design. Their results are now published in the journal Science Advances
This project will aim at developing MEMS based nanoforce sensors with capacitive sensing capabilities. The nanoforce sensors will be further incorporated with in situ SEM and TEM small scale testing systems, for allowing simultaneous visualization of the deformation process during mechanical tests
The utilization of Kelvin Probe (KP) techniques for spatially resolved high sensitivity measurement of hydrogen has been a major break-through for our work on hydrogen in materials. A relatively straight forward approach was hydrogen mapping for supporting research on hydrogen embrittlement that was successfully applied on different materials, and…
It is very challenging to simulate electron-transfer reactions under potential control within high-level electronic structure theory, e. g. to study electrochemical and electrocatalytic reaction mechanisms. We develop a novel method to sample the canonical NVTΦ or NpTΦ ensemble at constant electrode potential in ab initio molecular dynamics…
Photovoltaic materials have seen rapid development in the past decades, propelling the global transition towards a sustainable and CO2-free economy. Storing the day-time energy for night-time usage has become a major challenge to integrate sizeable solar farms into the electrical grid. Developing technologies to convert solar energy directly into…
Crystal Plasticity (CP) modeling [1] is a powerful and well established computational materials science tool to investigate mechanical structure–property relations in crystalline materials. It has been successfully applied to study diverse micromechanical phenomena ranging from strain hardening in single crystals to texture evolution in…